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Introduction 
This is the final report for the PMD Characterization on an Active Fiber Link which began in May 1999. 
The related KUCR project number is IND18834.  The Sprint award number is P.O. 21-B000016923. 

For reference, text excerpts from the original proposal are included below. 

Overview 
We propose development of dedicated hardware for implementation of our first-order PMD adaptive 
compensation system.  We further propose long-term operation of this system on the KU-TIOC WDM link to 
collect data on DGD and PSP variations over time.  Through this effort we hope to learn more about the 
dynamics of adaptive PMD compensation and to validate the principles and effectiveness of this approach.  Data 
collected on this project will also provide critical information on the variability of DGD and PSP (data that are 
not currently available).  This data is essential not only for gaining a better understanding of PMD (what factors 
influence it, how fast does it fluctuate, when does it change the fastest, etc.), but also for enhancing the design of 
efficient adaptive compensation systems. 

The relevance of this research to Sprint is that an understanding of the dynamics of PMD will be gained.  This 
knowledge will be use critical for the development of specifications for future active PMD compensation 
systems. 

Goals 
Gain an understanding of how DGD and PSPs vary over time in a terrestrial link. 

Tasks 
1. Revise design of adaptive PMD compensation system for efficient implementation and concept validation. 

2. Collection and analysis of PMD data from the KU-TIOC link. 

Milestones 
• Efficient implementation of the first-order PMD adaptive compensation system using dedicated signal 

processing hardware. 
• Report describing the variation over time of the DGD and PSP on the KU-TIOC link. 
 

All project objectives have been accomplished with minor deviations from the proposal. 

Key findings: 

• Importance of polarization scrambling in improving performance of PMD compensation. 

• Improvements on basic PMD compensation architecture (DOP feedback signal, application to SCM). 

• Relatively slow temporal variation of differential group delay on buried Sprint fiber. 

• Techniques developed for predicting mean PMD-induced outage rates and outage duration based on measured PMD. 

During the course of this project, numerous publications were produced.  A list of these follows.  Copies of most of these 
publications are provided in Appendix A. 

In addition, a literature review was preformed regarding polarization control, polarization-mode dispersion, PMD 
compensation, and related topics.  The resulting bibliography is provided in Appendix B. 



PMD-related accomplishments under this and related previous Sprint funded projects 
Below are some highlights from the previous Sprint-funded PMD-related research along with significant patents, patent 
applications, journal papers, conference papers, and presentations: 

Developed novel PMD measurement technique. 
Song, S., C. Allen, K. R. Demarest, and R. Hui, “A novel method for measuring polarization-mode dispersion using four-wave 
mixing,” Journal of Lightwave Technology, 17(12), pp. 2530-2533, 1999. 

Song, S., K. Demarest, C. Allen, "A Poincare sphere method for measuring polarization-mode dispersion using four-wave mixing 
(FWM) in single-mode optical fiber," Symposium on Optical Fiber Measurements, Boulder, CO, pp. 79-82, Sept. 2000. 

Using laboratory test equipment, we developed of a 1st-order PMD compensation system that incorporates polarization 
scrambling to improve compensation effectiveness. 

Pua, H. Y., K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, R. Hui, "An adaptive first-order polarization-mode dispersion 
compensation system: theory and demonstration," Journal of Lightwave Technology, 18(6), pp. 832-841, 2000. 

Pua, H.Y., C. Allen, K. Demarest, R. Hui, K.V. Peddanarappagari, "Method and apparatus to compensate for polarization-mode 
dispersion," U. S. Patent Number 6,459,830 issued October 1, 2002. 

Developed a custom 1st-order PMD compensation system with a faster response time. 
Chimata, A.-P. and C. Allen, "Development of an adaptive polarization-mode dispersion compensation system," ITTC Technical 
Report ITTC-FY2003-TR-18834-02, January 2003. 

Demonstrated concept of PMD compensation for subcarrier-multiplexed signals. 
Hui, R., C. Allen, and K. Demarest, "Combating PMD-induced signal fading in SCM optical systems with diversity detection," 
patent application submitted to the U.S. Patent Office December 20, 2001. 

Hui, R., C. Allen, and K. Demarest, "PMD-insensitive SCM optical receiver using polarization diversity," IEEE Photonics 
Technology Letters, 14(11), pp 1632-1634, 2002. 

Hui, R., C. Allen, and K. Demarest, "Combating PMD-induced signal fading in SCM optical systems using polarization diversity 
optical receiver," OFC '02, Anaheim, CA, WQ4, pp. 302-304, 2002. 

Analysis of long-term PMD measurements on single-spans of buried fiber 
Richards, D.L., C.T. Allen, D.C. Hague, "Identifying polarization-mode dispersion," patent application submitted to the U.S. Patent 
Office November 19, 2002. 

Richards, D.L., C.T. Allen, D.C. Hague, "Identification of polarization-mode dispersion on a communication network," patent 
application submitted to the U.S. Patent Office May 2003.  

Allen, C.T., P.K. Kondamuri, D.L. Richards, and D.C. Hague, "Measured temporal and spectral PMD characteristics and their 
implications for network-level mitigation approaches," Journal of Lightwave Technology, 21(1), pp. 79-86, 2003. 

Allen, C., P.K. Kondamuri, D.L. Richards, and D.C. Hague, "Analysis and comparison of measured DGD data on buried single-
mode fibers," Symposium on Optical Fiber Measurements, Boulder, CO, pp. 195-198, Sept. 24-26, 2002. 

Allen, C., P. K. Kondamuri, D. Richards, and D. Hague, "Measured temporal and spectral PMD characteristics and their 
implications for network-level mitigation approaches," Proceedings of the IASTED International Conference on Wireless and 
Optical Communications, Banff, Alberta, Canada, pp. 713-720, 2002. 

Invited presentation:  "Analysis and comparison of measured DGD data on buried single-mode fibers," presented to the International 
Electrotechnical Commission, Technical Committee No. 86 (Fibre Modules), Working Group 8 (Dynamic Modules), Atlanta, GA, 
March 23, 2003.  

Kondamuri, P.K. and C. Allen, "Characterization of polarization-mode dispersion on buried standard single-mode fibers," ITTC 
Technical Report ITTC-FY2003-TR-18834-01, November 2002. 



Appendix A  −  Publications Produced 
Copies of PMD-related publications produced under this and previous Sprint-funded PMD-related research projects. 
Note that the two ITTC Technical reports (ITTC-FY2003-TR-18834-01, ITTC-FY2003-TR-18834-02) were previously 
delivered and are not duplicated here. 
 
Copies of the following publications follow: 
 
Allen, C.T., P.K. Kondamuri, D.L. Richards, and D.C. Hague, "Measured temporal and spectral PMD characteristics and 

their implications for network-level mitigation approaches," Journal of Lightwave Technology, 21(1), pp. 79-86, 2003. 

Allen, C., P.K. Kondamuri, D.L. Richards, and D.C. Hague, "Analysis and comparison of measured DGD data on buried 
single-mode fibers," Symposium on Optical Fiber Measurements, Boulder, CO, pp. 195-198, Sept. 24-26, 2002. 

Allen, C., P. K. Kondamuri, D. Richards, and D. Hague, "Measured temporal and spectral PMD characteristics and their 
implications for network-level mitigation approaches," Proceedings of the IASTED International Conference on 
Wireless and Optical Communications, Banff, Alberta, Canada, pp. 713-720, 2002. 

Hui, R., C. Allen, and K. Demarest, "PMD-insensitive SCM optical receiver using polarization diversity," IEEE Photonics 
Technology Letters, 14(11), pp 1632-1634, 2002. 

Hui, R., C. Allen, and K. Demarest, "Combating PMD-induced signal fading in SCM optical systems using polarization 
diversity optical receiver," OFC '02, Anaheim, CA, WQ4, pp. 302-304, 2002. 

Pua, H.Y., C. Allen, K. Demarest, R. Hui, K.V. Peddanarappagari, "Method and apparatus to compensate for polarization-
mode dispersion," U. S. Patent Number 6,459,830 issued October 1, 2002. 

Pua, H. Y., K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, R. Hui, "An adaptive first-order polarization-mode 
dispersion compensation system: theory and demonstration," Journal of Lightwave Technology, 18(6), pp. 832-841, 
2000. 

Song, S., K. Demarest, C. Allen, "A Poincare sphere method for measuring polarization-mode dispersion using four-wave 
mixing (FWM) in single-mode optical fiber," Symposium on Optical Fiber Measurements, Boulder, CO, pp. 79-82, 
Sept. 2000. 

Song, S., C. Allen, K. R. Demarest, and R. Hui, “A novel method for measuring polarization-mode dispersion using four-
wave mixing,” Journal of Lightwave Technology, 17(12), pp. 2530-2533, 1999. 
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Measured Temporal and Spectral PMD Characteristics
and Their Implications for Network-Level

Mitigation Approaches
Christopher T. Allen, Senior Member, IEEE, Pradeep Kumar Kondamuri, Douglas L. Richards, and Douglas C. Hague

Abstract—Signal degradation due to polarization-mode dis-
persion (PMD) effects may become significant for signaling rates
of 10 Gb/s, 40 Gb/s, and beyond. To assess the utility of various
PMD mitigation schemes, temporal and spectral measurements
of differential group delay (DGD) were made on 95 km of buried
standard single-mode fiber over an 86-d period to determine the
distribution and rate of change of high-DGD events. As expected,
statistical analysis of variations in DGD indicate that excursions
from the mean DGD by factors of 3.7 or higher have very low
probability. For this link, the DGD varied slowly with time (having
a drift time of about 3.4 d) and rapidly with wavelength. The DGD
data agree well with results of similar experiments reported in the
literature. Statistical analysis of the measured DGD data shows
that high-DGD episodes will be exceedingly rare and short-lived.
The impact of PMD on network operations is explored and
approaches to ensure network reliability are reviewed for network
operators given the task of transporting high-bit-rate channels
over fiber links with known PMD characteristics.

Index Terms—Optical fiber characterization, optical fiber com-
munication systems, polarization drift, polarization-mode disper-
sion (PMD), polarization-mode dispersion outage.

I. INTRODUCTION

I N THE PHENOMENON called polarization-mode disper-
sion (PMD), birefringence in the optical fiber provides two

polarization-dependent group velocities for optical signals. In
the high-coherence model of PMD (which assumes that the co-
herence time of the light source is greater than the PMD-in-
duced delays and no polarization-dependent loss), an input pulse
will result in two orthogonally polarized pulses that preserve
the shape of the original input pulse. The relative amplitudes of
these two pulses is determined by the state of polarization (SOP)
of the input pulse relative to the fiber’s input principal states of
polarization (PSPs). Thus, for each pulse input, two pulses arrive
at the receiver with different arrival times, called the differential
group delay (DGD) . This first-order model is frequency-in-
dependent and is only valid over limited bandwidths. For wider
bandwidths, higher order effects must be considered, resulting
in frequency-dependent polarization-mode dispersion [1], [2].
The bandwidth over which the PSPs can be assumed constant
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depends on the properties of the fiber and has been shown to
vary inversely with the mean DGD, [3]. While the min-
imum bandwidth of the PSPs in single-mode fibers (SMFs) was
found to be always over 50 GHz [3], this bandwidth for standard
SMF is of the order of 100 GHz [1].

PMD may become a major impediment for network opera-
tors seeking to increase the per-channel data rate on long-haul
fiber-optic links. While the DGD in buried fiber had negligible
impact at 2.5-Gb/s signaling rates, upgrades to 10 Gb/s, 40
Gb/s, and beyond will require increasingly more attention.
While there are PMD challenges facing carriers at 10 Gb/s,
these challenges are not as severe as originally feared. Major
carriers are successfully deploying 10-Gb/s dense-wave-
length-division-multiplexed (DWDM) links across the core of
their networks. A marked improvement in the DGD tolerance
of 10-Gb/s long-reach receivers (to about 40 ps) will likely
satisfy most length demands, obviating the need for PMD
compensation (PMDC). Signaling rates of 40 Gb/s and beyond
will most likely require some form of mitigation in long-haul
applications, such as robust modulation schemes or PMDC.

To ensure signal quality on their fiber at higher bit rates,
network engineers must anticipate the impact of PMD on the
various fiber routes. Design of a reliable network requires a
good model of the PMD characteristics on each link. An un-
derstanding of the variability of both the DGD and the PSPs is
required to specify appropriate transmission parameters as well
as PMDC specifications. Factors such as the mean DGD, PMD
correlation time, and bandwidth, as well as second-order effects,
together with performance prediction models, can provide this
understanding. While the probabilistic properties of PMD vari-
ations are known, the characteristics of a particular link depend
on how it was cabled and installed. Therefore, PMD measure-
ments on installed fiber links are required.

While PMD is a vector quantity, with a magnitude (DGD) and
a direction (PSP), we are deliberately focusing exclusively on
DGD since this is a readily measured parameter on installed op-
tical networks. The statistical distribution and behavior of PSPs
has been extensively studied and reported elsewhere.

II. PMD STATISTICS

A. Mean DGD

For long optical fibers, the PMD figure of merit typically
specified is its mean DGD (having units of ps) or its PMD
coefficient (having units of ps/ km), where is the
fiber length. The PMD for an installed (buried) fiber-optic cable

0733-8724/03$17.00 © 2003 IEEE



80 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 1, JANUARY 2003

is dominated by the inherent PMD of the bare fiber; however,
the level of relaxation provided by the cabling and installation
techniques also affects PMD. While the PMD in bare fiber is
determined largely by the core-cladding concentricity achieved
during manufacture, we have found that loose-tube cabling re-
sults in a lower PMD than other cabling methods, such as slotted
core cabling. In addition, mechanical stresses introduced during
cable installation (burial) also contribute to the PMD and will be
affected by the installation practices used and whether the cable
is in a protective conduit.

The mean DGD for a given fiber is a constant that represents
both the average of DGD values at one time across a broad spec-
tral bandwidth

(1)

and the average of DGD values for a single wavelength over a
long time period

(2)

where is the DGD value at wavelength and time
. Although the mean DGD for an installed fiber is constant,

changing environmental factors (e.g., temperature) cause the in-
stantaneous DGD at a given wavelength to vary ran-
domly about that mean.

B. Maxwellian Distribution

The DGD for a given wavelength at any moment in time
is a random variable with a Maxwellian probability

density function (pdf) [4], [5]

where (3)

for . Therefore, the single parameter fully
specifies the distribution.

Using this distribution, the probability of exceeding a par-
ticular value can be found using

(4)

For example, the probability of exceeding 3.7 is
1.3 10 . Expressed another way, if the mean DGD of a fiber
link is 10 ps, then 99.999 99% of the time, the DGD will be
less than 37 ps.

III. N ETWORK DESIGN CONSIDERATIONS

In the design of a robust, long-haul fiber-optic network, the
relationship between the maximum achievable link length and
bit rate must be considered. For link designs where the max-
imum tolerable DGD is exceeded, techniques for coping with
the effects of PMD must be explored.

Fig. 1. Map of normalized DGD versus wavelength and time.

A. Receiver DGD Tolerance

The maximum-link DGD that a receiver can tolerate before
the signal degradation becomes unacceptable depends on a
variety of factors, including line bit rate, modulation format,
optical signal-to-noise ratio (SNR) and receiver design. For
intensity-modulated, direct-detected (IM-DD) systems, Ian-
noneet al. [6] found that when the transmitted signal excites
both PSPs equally (a worst-case condition), a 1-dB receiver
sensitivity penalty results when the instantaneous DGD is
about 23% of the signaling time period . For a 2.5-Gb/s
nonreturn-to-zero (NRZ) signal ( is 400 ps), this corre-
sponds to a tolerable DGD value of about 92 ps; at 10 Gb/s,
about 23 ps is tolerable; and for a 40-Gb/s NRZ signal, this
corresponds to about 5.7 ps. This maximum-tolerable DGD
level is representative of the NRZ IM-DD case; receiver DGD
tolerance can be improved through careful receiver design,
the use of PMD-tolerant signaling formats, and the use of
forward-correction codes (FECs). Khosravani and Willner
[7] showed that return-to-zero (RZ), chirped RZ, and disper-
sion-managed soliton signaling formats are much more tolerant
of PMD effects, compared with NRZ formats. Shiehet al. [8]
and Xie et al. [9] have demonstrated a substantial increase
in receiver tolerance of DGD when the FEC is used. Modern
long-haul, 10-Gb/s receivers using FEC or RZ modulation can
tolerate about 40 ps of DGD with a 1-dB power penalty.

B. Probability of Signal Outage

For occurrences of high instantaneous DGD, signal quality
may be intolerable, resulting in a PMD-induced outage. Such
outages may significantly affect network availability for higher
bit rates (10 Gb/s, 40 Gb/s, and higher). For a network to op-
erate with an overall availability of “five nines” (i.e., 99.999% of
availability), the desired PMD-related availability factor may be
“seven nines” (i.e., 99.999 99%), which corresponds to a max-
imum-tolerable DGD 3.7 times the mean DGD. For a 2.5-Gb/s
IM-DD NRZ system with a DGD tolerance of 92 ps, this results
in an acceptable mean DGD value of 25 ps; for a 10-Gb/s system
with a DGD tolerance of 23 ps, the acceptable mean DGD is 6.2
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Fig. 2. Histogram of measured DGD/ mean DGD data, along with Maxwellian pdf for comparison.

ps; and for 40-Gb/s with a tolerable DGD of 5.7 ps, the accept-
able mean DGD level is 1.5 ps. For DGD-tolerant receivers (40
ps at 10 Gb/s), this results in an acceptable-mean DGD of 10.8
ps.

C. Coping With PMD

For network operators faced with the challenge of upgrading
the channel data rate on a high-PMD link in the network, a
handful of solutions exist that will preserve the signal quality
at increased data rates.

One alternative cost solution is to selectively replace those
fiber segments in the link known to be the dominant contribu-
tors to the overall link DGD, if they can be identified. Another
alternative cost solution is to regenerate the optical signal by
placing back-to-back terminals at the point in the link where the
DGD effects approach an intolerable level, thus effectively re-
ducing the optical link length.

Still another approach is to introduce error-correction codes,
such as FEC. In this approach, the optical data payload is
reduced incrementally in exchange for a marginal gain in PMD
tolerance.Yet another solution is to incorporate an adaptive
PMDC system [8]–[12], typically located at the receiver. Typ-
ical PMD compensation systems are effective at minimizing
the effects of first-order PMD and, in some cases, second-order
PMD. However, both first- and second-order PMDC systems
suffer the drawback that they reduce the effects of signal
degradation over a very narrow optical bandwidth. This is a
significant drawback for DWDM systems. For a long-haul
fiber-optic link carrying hundreds of wavelengths, a separate
PMDC system may be required for each wavelength to provide
the desired seven-nines availability.

For DWDM systems, another potential solution exists.
Särkimukka et al. [13] proposed a method for mitigating
PMD effects in a multichannel system by moving traffic off

of PMD-impaired channels onto spare channels that are not
experiencing PMD degradation.

One may also rely upon more traditional protection tech-
niques, e.g., SONET ring or Internet protocol (IP) routing at
layers 1 and 3, respectively. This protection can easily provide
a guard against occasional PMD-induced outages of limited du-
ration. However, for this approach to be viable, the episodes of
abnormally high-DGD events must be infrequent and spectrally
localized. To evaluate the feasibility and limits of this solution,
an understanding of the temporal and spectral nature of PMD is
required.

Finally, there are also efficient optical networking solutions
offering varying degrees of protection by using an optical cross
connect with a DWDM system. Operators may then construct a
mesh-protected network and provide managed wavelength ser-
vices that are protected against possible PMD-induced outages.
Similar to the traditional protection methods, these more recent
techniques will only be viable with infrequent and spectrally lo-
calized outages.

IV. TEMPORAL BEHAVIOR OF DGD

Given the dynamic nature of PMD and the low probability
of excursions to intolerable levels, measurements of
on buried fiber spans were made over long periods to enable
prediction of the potential impact of PMD on network avail-
ability. Of particular interest are the frequency and duration of
these rare events. The Jones matrix eigenanalysis (JME) tech-
nique was used to measure the DGD data on a 95-km span of
slotted-core, direct buried, standard single-mode (ITU G.652)
fiber-optic cable made available by Sprint.

DGD was measured roughly every 3 h at wavelengths ranging
from 1510 nm to 1625 nm with a spectral resolution of 0.1 nm
(about 12.5 GHz). Over 86 d (from November 9, 2001, through
February 2, 2002) 692 measurements were made on the 1150
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Fig. 3. Measured temporal variations in normalized DGD over 86 d at 1550
nm (top) and averaged overall 1150 frequency measurements (bottom).

discrete wavelengths. Fig. 1 shows in a color-coded format this
normalized DGD data (i.e., ) representing 795 800
measured values.

A histogram of this normalized DGD data is shown in Fig. 2
and is seen to have a shape consistent with a Maxwellian distri-
bution, as expected. A curve representing a Maxwellian distri-
bution for a 1-ps mean DGD is superimposed for comparison.
Note that no occurances of DGD/mean DGD greater than 3.1
were observed during this 86-d period.

From Fig. 1, it is apparent that for buried fiber, DGD values
do not change rapidly (i.e., no abrupt changes are seen). Fig. 3
shows time histories of measured DGD data over the 86-d pe-
riod. The top plot is DGD data at 1550 nm, and the bottom
plot is frequency-averaged data. While the mean value of the
bottom plot is one (by definition), the mean value of the top plot
is 1.088. This should not be interpreted to mean that the mean
DGD is changing; rather, since fewer data were used to estimate
the mean, there is more uncertainty in that estimate, compared
with the estimate using all of the data.

To determine the DGD rate of change, an autocorrelation
analysis was performed on the DGD time histories. Fig. 4 (top)

Fig. 4. Normalized temporal ACFs of normalized DGD data measured at 1550
nm (top) and across 1150 frequencies (bottom). Theoretical ACF curves are
fitted to the measured temporal ACFs.

shows the normalized temporal autocorrelation function (ACF)
of the DGD data measured at 1550 nm. Fig. 4 (bottom) shows
the ACF for the DGD time history for frequency-averaged DGD
data. Also shown in Fig. 4 are curves representing the theoretical
temporal ACF for DGD [14], which has the form

AFC (5)

where is the average drift time of DGD. The drift time indi-
cates the time scale over which the DGD changes. Furthermore,
when outages occur, the outage duration will be related to the
drift time [14], [15]. Based on data collected over 86 d, the drift
time for this fiber is estimated to be around 3.4 d. Expressed an-
other way, samples should be collected about once every 3 d to
obtain statistically independent DGD values on a specific wave-
length; measurements collected more often are correlated.

For comparison, others have reported a range of DGD corre-
lation times under various fiber conditions. For spools of fiber
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Fig. 5. Spectral variations in normalized DGD over 1150 wavelengths
measured on November 9, 2001 (top), and time-averaged overall 692 time
measurements (bottom).

in a laboratory environment, correlation times of about 30 min
on 31.6 km of fiber [16] and 3 h on a 10-km fiber [17] have been
reported. DGD variations on a 48-km aerial cable exhibited time
scales ranging from 5 to 90 min, depending the air temperature
rate of change [18]. For submarine cables, a DGD correlation
time of about 1 h was observed on a 119-km cable [19], and
[20] observed PMD changes with a period of about 2 mo on a
62-km fiber-optic cable. On buried fibers, correlation times of
at least 20 min (17 km) [21], 1–2 h (48.8 km) [18], 3 and 5.7
d (127 km) [14], and 19 h (114 km) [22] have been reported.
The significant variation of correlation times demonstrates how
the installation scheme impacts the temporal behavior of DGD.
Since temperature variations are known to cause PMD varia-
tions, cables in a thermally stable environment (e.g., submarine
cable) will have long correlation times, whereas cables that ex-
perience diurnal temperature variations (e.g., aerial cables and
buried cables with above-ground segments) will have correla-
tion times less than 24 h. And cables in an unstable thermal and
mechanical environment (e.g., aerial cables) will have correla-
tion times dependent on both temperature and wind conditions.

Fig. 6. Normalized spectral autocorrelation functions (ACFs) of normalized
DGD data measured on November 9, 2001 (top) and time-averaged overall
692 measurements (bottom). Theoretical ACF curves are fitted to the measured
spectral ACFs.

Thus, our observation of 3.4 d is consistent for the buried cable
having no above-ground segments.

With knowledge gained from the temporal ACF analysis, we
can now interpret realistically our DGD data set. Over the 86
d of observation, about 25 independent temporal samples per
wavelength were collected.

V. SPECTRAL BEHAVIOR OF DGD

From Fig. 1, we note that the DGD varies significantly with
wavelength. In Fig. 5, the top plot shows the normalized spec-
tral variation of the first DGD data (measured on November 9,
2001), and the bottom plot shows the spectral variation of the
time-averaged, normalized DGD data, i.e., the normalized DGD
data processed using (2).

To determine the DGD bandwidth, spectral autocorrelation
analysis was performed on the normalized DGD spectral data.
In Fig. 6, the top graph shows the resulting normalized spectral
ACF for one spectral measurement (data collected on November
9, 2001) and the bottom shows the normalized spectral ACF for
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the time-averaged data. Also shown in Fig. 6 are curves repre-
senting theoretical spectral ACFs for DGD, with the form [23]

ACF (6)

where is the radian frequency and represents the vari-
ance of the DGD.

From the measured data, the bandwidth for the normalized
DGD is estimated to be about 7.5 nm, or 936 GHz. Therefore,
if the mean DGD is 1 ps and an optical channel is affected by
significant DGD, nearby channels (within about 7.5 nm) may
also experience this effect.

Theory and experiments [23] have demonstrated that the
DGD bandwidth is inversely proportional to the mean DGD,
as follows:

(7)

Thus, fibers with a high mean DGD have a narrower DGD band-
width than fibers with a low mean DGD. Thus, for a fiber with a
mean DGD of 1 ps, the predicted DGD bandwidth is 900 GHz,
which agrees well with the bandwidth found using the spec-
tral ACF fit in Fig. 6 (bottom). Note that the normalized DGD
bandwidth in Fig. 6 (top) is about 4 nm, which is significantly
less than the approximately 7.5-nm bandwidth seen in Fig. 6
(bottom). This should not be interpreted to mean that the DGD
bandwidth is varying; rather, the bandwidth estimate obtained
using all of the data will be more accurate, since it is based on
significantly more data points.

VI. I MPLICATIONS FORNETWORK AVAILABILITY

A. Mean Time Between PMD-Related Outages

In the past, the outage probability due to PMD effects
has been expressed in terms of minutes per year [2]. In cases
where the drift time is measured in days and the probability of
an outage is quite small, represents the annualized outage
probability based on long time records. Accurately estimating
the impact of the PMD on network availability requires statis-
tical analysis of the DGD variability. Caponiet al. [24] showed
how the mean time between PMD-related outages can be esti-
mated from the temporal characteristics of DGD variations and
the Maxwellian pdf. The mean outage rate (defined as the
mean number of outage events per unit time with units of events
per year) is found using [24]

threshold (8)

where is the DGD pdf, is the time derivative of the
DGD, and is the pdf of . In this analysis, it is assumed
that an outage results when the DGD value exceeds the threshold
value. Caponiet al.[24] observed and to be statistically
independent and also found that is cable- and installation-
dependent.

Fig. 7 shows the calculated outage probability and the
mean outage rate for a given system threshold relative to

Fig. 7. Calculated outage probabilityP and mean outage rateR versus
threshold/mean DGD.

the mean DGD. While is based only on the Maxwellian
distribution, is based on measured DGD data. From our
measured DGD data, we calculated an of 0.157 outage
events per year (one outage event every 6.39 y) for the case
where the threshold is three times the mean. When the threshold
is increased to 3.7 times the mean DGD, becomes 0.0034
outage events per year, or one outage event in 1648 years.

For comparison, Nagelet al.[22] observed a DGD correlation
time of 19 h and predicted that the DGD will exceed three times
its mean value once every 3.5 y. From data measured on 37 km
of buried cable (with above-ground segments) having a mean
DGD of 9.44 ps, Caponiet al. [24] predicted that the DGD will
exceed three times the mean DGD once every 2.5 y.

B. Duration of High-DGD Events

The mean duration of DGD-induced outages can be deter-
mined using statistical analysis, as well. Caponiet al. [24]
showed that the mean outage duration is

(9)

which has units of minutes.
Fig. 8 shows the calculated mean outage duration as a

function of system threshold relative to the mean DGD. Since
is found using , which is cable- and installation-depen-

dent, will also be cable- and installation-dependent. For the
case where the threshold is three times the mean DGD on this
link, the mean duration of PMD-induced outages is about 136
min. For the case where the threshold is increased to 3.7 times
the mean DGD, reduces to about 108 min.

Again for comparison, Nagelet al. [22] estimated a mean
outage duration (outage means DGD greater than three times
mean DGD) between 10 and 20 min for their link. Similarly,
Caponiet al.[24] predicted a mean outage duration of 56 min on
their cable. Furthermore, Bülow and Veith [15] found that while
unusually long duration outages occur, the probability of occur-
rence decreases almost exponentially with outage duration.
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Fig. 8. Calculated mean outage durationT as a function of threshold/mean
DGD.

C. Impact of High-DGD Events on Adjacent Channels

When a high-DGD episode occurs, how many DWDM chan-
nels will be affected? For a link with a mean DGD of 5 ps, the
DGD bandwidth will be about 180 GHz, or 1.44 nm. Therefore,
for a DWDM system with 50-GHz channel spacing, during a
3.7 event, the DGD in adjacent channels may also expe-
rience PMD-induced signal degradation (i.e., only two or three
channels will likely be affected by a single high-DGD episode).

D. Design Rules

Based on these observations and analyses, certain rules may
be developed. An important parameter in making decisions re-
garding PMD in a network is the ratio between the receiver’s
DGD tolerance and the link’s mean DGD, as follows:

(10)

For cases where , the frequency of PMD-induced
outages will be low, and their duration may be brief. In these
cases, the approach proposed by Särkimukkaet al. [13] (or one
utilizing new protection techniques) may be viable. The occur-
rences that may require the switching of this traffic will likely
be infrequent (spanning years) and may only be necessary for
several minutes or a couple of hours.

For cases where , PMD-induced outages may
occur with a maximum frequency of one event every few days
and a mean outage duration of 2–4 h. For cases where ,
chronic PMD-induced outages will result with durations of sev-
eral hours. In these instances, the option of applying PMD com-
pensation, interrupting the link with a back-to-back terminal re-
generator, or even replacing particular fiber segments, may be
appropriate.

E. Example Scenarios

1) 10-Gb/s, 10 ps, Receiver’s DGD Tolerance 40
ps: In this scenario, the DGD margin is 4. The probability
of the DGD exceeding the receiver’s DGD tolerance level is

about 7.4 10 , or, effectively, 0. In this case, it is quite un-
likely that a PMD-induced outage will ever be observed, and if
one does occur, its mean duration will be 100 min. The DGD
bandwidth will be about 90 GHz, or about 0.72 nm.

2) 10-Gb/s, 10 ps, Receiver’s DGD Tolerance 23
ps: In this case, the margin will be 2.3, meaning that the
probability of the DGD exceeding the receiver’s limit is about
0.37%. For our buried cable, PMD-induced outages typically
will occur about once a month and with a mean duration of about
3 h. The DGD bandwidth will again be about 90 GHz.

3) 40-Gb/s, 3.2 ps, Receiver’s DGD Tolerance 5.7
ps: The DGD margin , in this case, is 1.8; therefore, the
probability of the DGD exceeding the receiver’s limit is 4.4%. In
this scenario, PMD-induced outages typically will occur about
every 6 d. The mean duration will be about 4 h; however, outages
persisting for a day may occur. The DGD bandwidth is about
2.2 nm, or 280 GHz, so in a DWDM application with 100-GHz
channel spacing, two or three channels may be affected during
each outage.

VII. CONCLUSION

By examining the statistical behavior of DGD in an optical
fiber and using measured DGD data on a buried optical cable,
predictions regarding the probability, frequency of occurrence,
and spectral extent of high-DGD episodes can be made. Our ob-
servations indicate that DGD varies slowly in time and excur-
sions of three or more times the mean DGD are infrequent and
relatively short-lived. The measured DGD data indicate that for
a PMDC system to be effective on this link, the PMDC system
could have a time constant of a few hours and still keep pace
with the DGD variations. Furthermore, since high-DGD events
are isolated spectrally, a PMDC that is tunable in wavelength
may be appropriate.

Viable mitigation approaches depend greatly on the DGD
margin (i.e., the ratio of the receiver’s maximum-tolerable DGD
to the link’s mean DGD). For cases where the link’s mean DGD
is comparable to the receiver’s maximum-tolerable DGD, ap-
proaches for ensuring network availability include incorpora-
tion of PMDC systems, shortening the link length by strategi-
cally introducing back-to-back terminal regenerators or by re-
placing fiber segments found to have excessively high-DGD
levels. For cases where the link’s mean DGD is less than a third
of the receiver’s tolerable DGD, network reliability may be en-
hanced by providing a few spare channels in a DWDM environ-
ment. This finding is significant for network operators who may
consider an optical networking solution whereby traffic may ef-
ficiently share protection bandwidth rather than extensive use of
PMDC systems.
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Abstract
Temporal and spectral measurements were made on
three different 95-km fibers within a slotted-core, direct
buried, standard single-mode fiber-optic cable over
many days to characterize DGD variability.  From this
data we observed that DGD varies slowly over time but
rapidly over wavelength.  This data showed good
agreement with a Maxwellian distribution.  The
frequency-averaged mean DGD varied by about 10% or
less during the periods that included significant
temperature swings.  Outage analysis showed that for
system tolerances of three times the mean DGD,
outages will occur typically every 3 to 8 years with
mean outage durations ranging from about one to two
hours.  From this analysis we conclude that high-DGD
episodes are spectrally localized and will be
exceedingly rare and short lived.

Introduction
Polarization-mode dispersion (PMD) may be a major
impediment for network operators seeking to increase
the per channel data rate on long-haul fiber-optic links.
While the differential group delay (DGD, or ∆τ) in
buried fiber had negligible impact at 2.5-Gb/s signaling
rates, upgrades to 10 Gb/s, 40 Gb/s and beyond will
require increasingly more attention.  While there are
PMD challenges facing carriers operating at 10 Gb/s,
these challenges are not as severe as originally feared.
Major carriers are successfully deploying 10-Gb/s
dense-wavelength division multiplexed (DWDM) links
across the core of their networks.  A marked
improvement in the DGD tolerance of 10 Gb/s long-
reach receivers (to about 40 ps) will likely satisfy most
length demands, obviating the need for PMD
compensation (PMDC).  Signaling rates of 40 Gb/s and
beyond will most likely require some form of mitigation
in long-haul applications, such as robust modulation
schemes or PMDC.
To ensure signal quality on their fiber at higher bit rates,
network engineers must anticipate the impact of PMD
on the various fiber routes. An understanding of the
variability of both the DGD and the principal states of
polarization (PSPs) is required to specify appropriate
transmission parameters.  Factors such as the mean
DGD, PMD correlation time and bandwidth, as well as

second-order effects together with performance
prediction models can provide this understanding.
The availability of measured PMD data on installed,
buried fibers is limited.  In this paper we present
measured DGD data for buried, standard single-mode
fiber to improve our understanding of the variability of
PMD.  While PMD is a vector quantity, with a
magnitude (DGD) and a direction (PSP), we are only
focusing on the DGD.  The statistical distribution and
behavior of PSPs has been extensively studied and is
shown to be correlated to DGD behavior [1,2].

Experimental setup
Experiments were conducted to measure the
instantaneous DGD on three different 95-km fibers (1,
2, and 3) within a slotted-core, direct buried, standard
single-mode fiber-optic cable made available by Sprint.
A polarization analyzer employing the Jones-Matrix-
Eigenanalysis (JME) method was used for
measurements at wavelengths from 1510 nm to 1625
nm with a spectral resolution of 0.1 nm (about 12.5
GHz).  Measurements on fiber span 1 were repeated
approximately every 3 hrs and they were carried on for
about 86 days whereas on fiber spans 2 and 3 they were
repeated approximately every 1½ hours and carried out
for about 14 and 9 days, respectively.  Over the 86 days
(from Nov. 9, 2001 through Feb. 2, 2002) 692
measurements were made on fiber span 1 across the
1150 discrete wavelengths representing 795,800
measured values.  For fiber spans 2 and 3 the
corresponding number of DGD measurements is about
271,600 and 181,700.

Plots of DGD vs. wavelength and time
Figures 1, 2, and 3 show in a color-coded format
normalized DGD data (i.e., DGD/mean DGD) measured
on the three fiber spans, respectively.  From the plots it
is clear that for buried fibers DGD changes with time
but not at a rapid rate.  This variation is random and
differs from fiber to fiber.  It is also evident that the
DGD varies significantly with wavelength and relatively
high-DGD events are spectrally localized.
A histogram of the normalized DGD data on fiber span
1, shown in Figure 4, is seen to have shape consistent
with a Maxwellian distribution, as expected.  A curve
representing a Maxwellian distribution for a 1-ps mean
DGD is also plotted for comparison.



Figure 1.  Measured, normalized DGD vs. wavelength and time
for fiber span 1 (86 days of data).

Figure 2.  Measured, normalized DGD vs. wavelength and time
for fiber span 2 (14 days of data).

(c)

Figure 3.  Measured, normalized DGD vs. wavelength and time
for fiber span 3 (9 days of data).

Figure 4.  Histogram of measured, normalized DGD data
on fiber span 1.

Similar histograms were obtained for the data on the
other two fiber spans (plots not shown here) and they
also showed good agreement with a Maxwellian
distribution.

Mean DGD variation with time
To observe the time-dependent nature of DGD more
closely, 1150 DGD measurements over all wavelengths
were averaged together to obtain frequency-averaged
DGD data, denoted as <DGD>λ normalized by the
overall mean DGD (averaged over both time and
frequency), denoted as <<DGD>λ>t.  Since temperature
is a known driver in changing DGD changes, hourly air
temperature data for the region were collected as well.
The variation of frequency-averaged DGD and
temperature with time on the three fiber spans is shown
in Figures 5, 6 and 7.  From Figure 5 it can be observed
that frequency-averaged DGD varies by only about
±10% over 86 days of observations that included
significant temperature swings.  Since the entire length
of the fiber is buried, the diurnal temperature variations
do not represent the fiber temperature.  Statistical
analyses reveal no significant correlation between long-
term temperature variations and the frequency-averaged
mean DGD.



Figure 5.  Frequency-averaged DGD and temperature vs. time for
fiber span 1.

Figure 6.  Frequency-averaged DGD and temperature vs. time for
fiber span 2.

Figure 7.  Frequency-averaged DGD and temperature vs. time for
fiber span 3.

System outage analysis
An outage event is one which exceeds the given
threshold value of DGD, ∆τth.  The outage probability
Pout, expressed in minutes/year, can be calculated from

the Maxwellian probability distribution function (pdf),
fτ(⋅) as

( ) ( )∫ τ∆τ∆−=τ∆≥τ∆
τ∆

τ

th

0
th df1P (2)

and then multiplying the number of minutes in a year.
As Pout is based on the Maxwellian pdf, it may be
expressed as a function of one independent variable
M= ∆τth/(mean DGD)  as Pout(M) and is clearly fiber
independent and will be the same for all installations.
In cases where the probability of an outage is quite
small, Pout represents the annualized outage probability
based on long time records, however no insight is
provided regarding the outage rates and their durations.
Accurate estimation of the impact of PMD on network
availability requires statistical analysis of the DGD
variability.  Caponi et al. [3] showed how the mean time
between PMD-related outages could be estimated from
the temporal characteristics of DGD variations and the
Maxwellian probability density function.  The mean
outage rate, Rout (defined as the mean number of outage
events per unit time with units of events/year), is found
using [3]

( ) ( ) 'd''fthresholdf
2
1R 'out τ∆∫ τ∆τ∆=

∞

∞−
ττ (3)

where ∆τ' is the time derivative of the DGD, and fτ'(⋅) is
the pdf of ∆τ'.  Caponi et al. observed ∆τ and ∆τ' to be
statistically independent and also found that Rout is cable
and installation dependent.
Figure 8 shows the calculated outage probability, Pout,
and the mean outage rate, Rout, for a given system
threshold relative to the mean DGD on the three fiber
spans.

Figure 8.  Calculated outage probability, Pout, and mean outage
rate, Rout, versus Threshold/Mean DGD.



Figure 9.  Calculated mean outage duration, Tout, as a function of
Threshold/mean DGD.

Table 1.  Predicted mean time between outages (MTBOs) and
mean outage durations for different DGD tolerances

3*<DGD> 3.7*<DGD>
Span 1

MTBO
Outage duration

6.39 years
136 min

1648 years
108 min

Span 2
MTBO
Outage duration

3.25 years
69 min

833 years
55 min

Span 3
MTBO
Outage duration

7.91 years
138 min

2000 years
133 min

The mean duration of DGD-induced outages can be
determined using statistical analysis as well.  Caponi et
al. [3] showed that the mean outage duration, Tout, is

outoutout RPT = (4)
which has units of minutes.
Figure 9 shows the calculated mean outage duration,
Tout, as a function of system threshold relative to the
mean DGD.  Since Tout is found using Rout, which is
cable and installation dependent, Tout will also be cable
and installation dependent.
From the above analysis, we can estimate the mean
outage time between outages (MTBOs) and mean
outage durations for various DGD tolerances for these
fiber spans.  Table 1 lists these values for system
thresholds of three and 3.7 times the mean DGD.
For comparison, Nagel et al. [4] predicted that for the
114-km buried link they studied, the DGD will exceed
three times its mean value once every 3.5 years and
estimated a mean outage duration of between 10 and 20

minutes for their link.  From data measured on 37-km of
buried cable, Caponi [3] predicted the DGD will exceed
three times the mean DGD once every 2.5 years with a
mean outage duration of 56 minutes.

Conclusions
We have measured DGD data on three different 95-km
fibers within a slotted-core, direct buried, standard
single-mode fiber-optic.  From these measurements we
observed that DGD varies slowly over time but rapidly
over wavelength or frequency.  Episodes of higher-that-
average DGD were observed and seen to be spectrally
localized and of limited duration.
To investigate the role of changing temperature on mean
DGD variations, frequency-averaged DGD data were
compared to temperature histories.  The frequency-
averaged DGD varied by only about ±10% over 86 days
of observations that included significant temperature
swings.
From this data predictions were made regarding the
probability, and frequency of outage occurrence.  While
the statistics of Maxwellian processes adequately
describe the annualized outage probability, further
analysis of the DGD data revealed the mean time
between outages and mean outage durations.  For
outages characterized by high DGD episodes (DGD
more than three times the mean DGD), we found that
the mean outage rates and durations for these three
fibers to be similar.  Our findings agree with reports by
others that DGD excursions of three or more times the
mean DGD are infrequent and relatively short lived.
This finding is significant for network operators who
must assess the impact of PMD on network reliability.
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Abstract− Signal degradation due to polarization-mode
dispersion (PMD) effects may become significant for
signaling rates of 10 Gb/s, 40 Gb/s, and beyond.  As
expected, statistical analysis of variations in differential
group delay (DGD) indicate that excursions from the
mean DGD by factors of 3.7 or higher have very low
probability.  Temporal and spectral measurements of
DGD were made on 95 km of buried standard SMF over
an 86 day period to determine the distribution and rate of
change of high DGD events.  A drift time of about 3.4
days was found.  The DGD data agree well with results of
similar experiments reported in the literature.  Coupling
the drift time characteristic with the statistical behavior
of DGD, we conclude that high-DGD episodes will be
exceedingly rare and short lived.  The impact of PMD on
network operators is explored.  Approaches are reviewed
for network operators tasked with transporting high bit-
rate channels over fiber links with known PMD
characteristics.

INTRODUCTION
In the phenomenon called polarization-mode dispersion

(PMD), birefringence in the optical fiber provides two
polarization-dependent group velocities for optical signals.
In the high-coherence model of PMD (which assumes the
coherence time of the light source is greater than the PMD-
induced delays and no polarization-dependent loss) an input
pulse will result in two orthogonally polarized pulses that
preserve the shape of the original input pulse.  The relative
amplitudes of these two pulses is determined by the state of
polarization (SOP) of the input pulse relative to the fiber’s
input principal states of polarization (PSPs).  Thus for each
pulse input, two pulses arrive at the receiver with different
arrival times, called the differential group delay (DGD), ∆τ.
This first-order model is frequency independent and is only
valid over limited bandwidths.  For wider bandwidths higher
order effects must be considered resulting in frequency
dependent polarization and dispersion [1], [2].  The
bandwidth over which the PSPs can be assumed constant
depend on the properties of the fiber and has been shown to
vary inversely with the mean DGD, <∆τ> [3].  While the
minimum bandwidth of the PSPs in single-mode fibers was
found to be always over 50 GHz [3], this bandwidth for
standard single-mode fiber is of the order of 100 GHz [1].

PMD may become a major impediment for network
operators seeking to increase the per channel data rate on
long-haul fiber-optic links.  While the DGD in buried fiber
had negligible impact at 2.5-Gb/s signaling rates, upgrades to

10 Gb/s, 40 Gb/s and beyond will require increasingly more
attention.  While there are PMD challenges facing carriers at
10 Gb/s, these challenges are not as severe as originally
feared.  Major carriers are successfully deploying 10 Gb/s
dense-wavelength division multiplexed (DWDM) links
across the core of their networks.  A marked improvement in
the DGD tolerance of 10 Gb/s long-reach receivers (to about
40 ps) will likely satisfy most length demands, obviating the
need for PMD compensation (PMDC).  Signaling rates of 40
Gb/s and beyond will most likely require some form of
mitigation in long-haul applications, such as robust
modulation schemes or PMDC.

To ensure signal quality on their fiber at higher bit rates,
network engineers must anticipate the impact of PMD on the
various fiber routes.  Design of a reliable network requires a
good model of the PMD characteristics on each link.  An
understanding of the variability of both the DGD and the
PSPs is required to specify appropriate transmission
parameters.  Factors such as the mean DGD, PMD correlation
time and bandwidth, as well as second-order effects together
with performance prediction models can provide this
understanding.

While PMD is a vector quantity, with a magnitude (DGD)
and a direction (PSP), we are deliberately focusing
exclusively on DGD as this is a readily measured parameter
on installed optical networks.  The statistical distribution and
behavior of PSPs has been extensively studied and reported
elsewhere.

PMD STATISTICS
Mean DGD

For long optical fibers, the PMD figure of merit typically
specified is its mean DGD, <∆τ>, (having units of ps) or its
PMD coefficient, <∆τ>/√L, (having units of ps/√km) where L
is the fiber length.  The PMD for an installed (buried) fiber-
optic cable is dominated by the inherent PMD of the bare
fiber; however, the level of relaxation provided by the cabling
and installation techniques also affect PMD.  While the PMD
in bare fiber is determined largely by the core-cladding
concentricity achieved during manufacture, we have found
that loose-tube cabling results in a lower PMD than other
cabling methods, such as slotted core cabling.  In addition,
mechanical stresses introduced during cable installation
(burial) also contribute to the PMD and will be affected by
the installation practices used and whether the cable is in a
protective conduit.



The mean DGD for a given fiber is a constant that
represents both the average of DGD values at one time across
a broad spectral bandwidth
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where ∆τ(λ, t) is the DGD value at wavelength λ and time t.
Although the mean DGD for an installed fiber is constant,
changing environmental factors (e.g., temperature) cause the
instantaneous DGD at a given wavelength, ∆τ(λ, t), to vary
randomly about that mean.

When various fiber segments are concatenated to form a
single long fiber, the mean DGD of the overall fiber is found
by
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where N is the number of segments.

Maxwellian distribution
The DGD for a given wavelength at any moment in time,

∆τ(λ, t), is a random variable with a Maxwellian probability
density function [4,5]
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for 0 < ∆τ < +∞, where

πσ=τ∆ /8 (5)

Figure 1.  Maxwellian probability density function.

Therefore the single parameter <∆τ> fully specifies the
distribution.  Figure 1 shows the Maxwellian probability
density function normalized by the mean DGD.

Using this distribution, the probability of ∆τ exceeding a
particular value can be found using

( ) ( )∫ τ∆τ∆−=≥τ∆
X

0
dp1XP (6)

For example, the probability of ∆τ/<∆τ> exceeding 3.7 is
1.3×10-7.  Expressed another way, if the mean DGD of a fiber
link is 10 ps, 99.99999% of the time the DGD will be less
than 37 ps.

NETWORK DESIGN CONSIDERATIONS
In the design of a robust, long-haul fiber-optic network, the

relationship between the maximum achievable link length
and bit rate must be considered.  For link designs where the
maximum tolerable DGD is exceeded, techniques for coping
with the effects of PMD must be explored.
Receiver DGD tolerance

The maximum link DGD that a receiver can tolerate before
the signal degradation becomes unacceptable depends on a
variety of factors, including modulation format, optical
signal-to-noise ratio, and receiver design.  For intensity-
modulated, direct-detected (IM-DD) systems, Iannone et al.
[6] found that when the transmitted signal excites both PSPs
equally (a worst case condition), a 1-dB receiver sensitivity
penalty results when the instantaneous DGD is about 23% of
the signaling time period, Tbit.  For a 2.5-Gb/s NRZ signal
(Tbit is 400 ps), this corresponds to a tolerable DGD value of
about 92 ps; at 10-Gb/s, about 23 ps is tolerable; and for a 40-
Gb/s NRZ signal, this corresponds to about 5.7 ps.  This
maximum tolerable DGD level is representative of the NRZ
IM-DD case; receiver DGD tolerance can be improved
through careful receiver design, use of PMD-tolerant
signaling formats, and the use of forward-correction codes
(FEC).  Khosravani and Willner [7] showed that RZ, chirped
RZ, and dispersion-managed soliton signaling formats are
much more tolerant of PMD effects compared to NRZ
formats.  Shieh et al. [8] and Xie et al. [9] have demonstrated
a substantial increase in receiver tolerance of DGD when
FEC is used.  Modern long-haul, 10-Gb/s receivers using
FEC or RZ modulation can tolerate about 40 ps of DGD with
a 1-dB power penalty.
Probability of signal outage

For occurrences of high instantaneous DGD, signal quality
may be intolerable resulting in a PMD-induced outage.  Such
outages may significantly affect network availability for
higher bit rates (10 Gb/s, 40 Gb/s, and higher).  For a network
to operate with an overall availability of “five nines” (i.e.,
99.999% of availability), the desired PMD-related availability
factor may be “seven nines” (i.e., 99.99999%) which
corresponds to a maximum tolerable DGD 3.7 times the mean
DGD.  For a 2.5-Gb/s IM-DD NRZ system with a DGD
tolerance of 92 ps, this results in an acceptable mean DGD
value of 25 ps; for a 10-Gb/s system with a DGD tolerance of
23 ps, the acceptable mean DGD is 6.2 ps; and for 40-Gb/s
with a tolerable DGD of 5.7 ps, the acceptable mean DGD



level is 1.5 ps.  For DGD-tolerant receivers (40 ps at 10 Gb/s)
this results in an acceptable mean DGD of 10.8 ps.
Coping with PMD

For network operators faced with the challenge of
upgrading the channel data rate on a high-PMD link in the
network, a handful of solutions exist that will preserve the
signal quality at increased data rates.

One alternative cost solution is to selectively replace those
fiber segments in the link known to be the dominant
contributors to the overall link DGD, if they can be identified.

Another alternative cost solution is to regenerate the
optical signal by placing a back-to-back terminals at the point
in the link where the DGD affects approach an intolerable
level, thus effectively reducing the optical link length.

Still another approach is to introduce error correction
codes, such as FEC.  In this approach the optical data payload
is reduced incrementally in exchange for a marginal gain in
PMD tolerance.

Yet another solution is to incorporate an adaptive PMD
compensation system [8, 9, 10, 11, 12], typically located at
the receiver.  Typical PMD compensation systems are
effective at minimizing the effects of first-order PMD, and, in
some cases, second-order PMD.  However both first- and
second-order PMD compensation systems suffer the
drawback that they reduce the effects of signal degradation
over a very narrow optical bandwidth.  This is a significant
drawback for dense wavelength-division multiplexing
(DWDM) systems.  For a long-haul fiber-optic link carrying
100s of wavelengths, a separate PMD compensation system
may be required for each wavelength to provide the desired
seven nines availability.  

For DWDM systems, another potential solution exists.
Särkimukka et al. [13] proposed a method for mitigating
PMD effects in a multichannel system by moving traffic off
of PMD-impaired channels onto spare channels that are not
experiencing PMD degradation.  

One may also rely upon more traditional protection
techniques (e.g. SONET ring or IP routing at layers 1 & 3,
respectively). This protection can easily provide a guard
against occasional PMD-induced outages of limited duration.
However, for this approach to be viable, the episodes of
abnormally high DGD events must be infrequent and
spectrally localized.  To evaluate the feasibility and limits of
this solution, an understanding of the temporal and spectral
nature of PMD is required.

Finally, there are also efficient optical networking
solutions offering varying degrees of protection by using an
optical cross-connect with a DWDM system.  Operators may
then construct a mesh-protected network and provide
managed wavelength services that are protected against a
possible PMD induced outages.  Similar to the traditional
protection methods, these more recent techniques will only be
viable with infrequent and spectrally localized outages. 

TEMPORAL BEHAVIOR OF DGD
Given the dynamic nature of PMD and the low probability

of excursions to intolerable levels, measurements of ∆τ(λ,t)

Figure 2.  Map of normalized DGD vs.
wavelength and time.

on buried fiber spans were made over long periods to enable
prediction of the potential impact of PMD on network
availability.  Of particular interest are the frequency and
duration of these rare events.  The Jones Matrix
Eigenanalysis (JME) technique was used to measure the
DGD data on a 95-km span of slotted-core, direct buried
fiber-optic cable made available by Sprint.

DGD was measured roughly every 3 hours at wavelengths
from 1510 nm to 1625 nm with a spectral resolution of
0.1 nm (about 12.5 GHz).  Over 86 days (from November 9,
2001 through February 2, 2002) 692 measurements were
made on the 1150 discrete wavelengths.  Figure 2 shows in a
color-coded format this normalized DGD data (i.e., ∆τ/<∆τ>)
representing 795,800 measured values.  Expressed another
way, if the 0.1-nm spectral samples and 3-hour time samples
are statistically independent, then this data set would
represent about 272 years of DGD data.

A histogram of this normalized DGD data is shown in
Figure 3, and is seen to have shape consistent with a
Maxwellian distribution, as expected.  A curve representing a
Maxwellian distribution normalized to the mean is also
plotted for comparison.

Figure 3.  Normalized histogram of measured DGD data.



Figure 4.  Measured temporal variations in normalized
DGD over 86 days (top) at 1550 nm and (bottom)
averaged over all 1150 frequency measurements.

From Figure 2 it is apparent that for buried fiber DGD
values do not change rapidly.  Figure 4 shows time histories
of measured DGD data over the 86-day period.  The top plot
is DGD data at 1550 nm and the bottom plot is frequency-
averaged data.  While the mean value of the bottom plot is
one (by definition), the mean value of the top plot is 1.088.
This should not be interpreted to mean that the mean DGD is
changing; rather since fewer data were used to estimate the
mean, there is more uncertainty in that estimate compared to
the estimate using all of the data.

To determine the DGD rate of change, an autocorrelation
analysis was performed on the DGD time histories.  Figure
5(top) shows the normalized temporal autocorrelation
function (ACF) of the DGD data measured at 1550 nm.
Figure 5(bottom) shows the ACF for the DGD time history
for the frequency-averaged DGD data.  Also shown in Figure
5 are curves representing the theoretical temporal
autocorrelation function for DGD [14] which has the form
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Figure 5.  Normalized temporal autocorrelation functions
(ACFs) of normalized DGD data measured (top) at

1550 nm and (bottom) across 1150 frequencies.
Theoretical ACF curves are fitted
to the measured temporal ACFs.

where td is the average drift time of DGD.  The drift time
indicates the timescale over which the DGD changes.
Furthermore, when outages occur, the outage duration will be
related to the drift time [14,15].  Based on data collected over
the 86 days, the drift time for this fiber is estimated to be
around 3.4 days.  Expressed another way, samples should be
collected about once every three days to obtain statistically
independent DGD values on a specific wavelength;
measurements collected more often are correlated.

For comparison, others have reported a range of DGD
correlation times under various fiber conditions.  For spools
of fiber in a laboratory environment, correlation times of
about 30 minutes on 31.6 km of fiber [16] and 3 hours on a
10-km fiber [17] have been reported.  DGD variations on a
48-km aerial cable exhibited time scales ranging from 5 to 90
minutes depending the air temperature rate of change [18].
For submarine cables, a DGD correlation time of about an
hour was observed on a 119-km cable [19], and [20] observed



Figure 6.  Spectral variations in normalized DGD over
1150 wavelengths (top) measured on Nov. 9, 2001 and

(bottom) time-averaged over all 692 time measurements.
PMD changes with a period of about two months on a 62-km
fiber-optic cable.  On buried fibers, correlation times of at
least 20 minutes (17 km) [21], 1-2 hours (48.8 km) [18], 3
and 5.7 days (127 km) [14], and 19 hours (114 km) [22] have
been reported.  Thus our observation of 3.4 days is consistent.

With knowledge gained from the ACF analysis, we can
now interpret realistically our DGD data set.  Over the 86
days of observation, about 25 independent samples were
collected.

SPECTRAL BEHAVIOR OF DGD
From Figure 2 we note that the DGD varies significantly

with wavelength.  Figure 6(top) shows the normalized
spectral variation of the first DGD data  (measured on
Nov. 9,2001) and the bottom plot shows the spectral variation
of the time-averaged, normalized DGD data.

To determine the DGD bandwidth, spectral autocorrelation
analysis was performed on the normalized DGD spectral
data.  Figure 7(top) shows the resulting normalized spectral
ACF for one spectral measurement (data collected on

Figure 7.  Normalized spectral autocorrelation functions
(ACFs) of normalized DGD data measured (top) on

Nov. 9, 2001 and (bottom) time-averaged over
all 692 measurements.  Theoretical ACF curves

are fitted to the measured spectral ACFs.
Nov. 9,2001) and Figure 7(bottom) shows the normalized
spectral ACF for the time-averaged data.  Also shown in
Figure 7 are curves representing theoretical spectral ACFs for
DGD, with the form [23]
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where ∆ω is the radian frequency and <∆τ2> represents the
variance of the DGD.

From the measured data the bandwidth for the normalized
DGD is estimated to be about 7.5 nm or 936 GHz.  Therefore
if the mean DGD is 1 ps and an optical channel is affected by
significant DGD, nearby channels (within about 7.5 nm) may
also experience this effect.

Theory and experiments [23] have demonstrated that the
DGD bandwidth is inversely proportional to the mean DGD.

τ∆=ω 24c (9)



Thus fibers with a high mean DGD have a narrower DGD
bandwidth than fibers with a low mean DGD.  Thus for a
fiber with a mean DGD of 1 ps, the predicted DGD
bandwidth is 900 GHz which agrees well with bandwidth
found using the spectral ACF fit in Figure 6(bottom).  Note
that normalized DGD bandwidth in the Figure 6(top) is about
4 nm which is significantly less than the approximately 7.5
nm bandwidth seen in Figure (bottom).  This should not be
interpreted to mean that the DGD bandwidth is varying;
rather the bandwidth estimate obtained using all of the data
will be more accurate as it is based on significantly more data
points.

IMPLICATIONS FOR NETWORK AVAILABILITY
Mean time between PMD-related outages
The mean time between PMD-related outages can be
estimated from the temporal characteristics of DGD
variations and the Maxwellian probability density function.
The DGD rate of change is characterized by the DGD drift
time, td.  This drift time may be thought of as “rolling the
dice” every td to obtain a new, statistically independent DGD
value.  Therefore the mean time between high-DGD events
(i.e., DGD exceeding a value X) can be estimated as

( )( )XPktT dX >τ∆⋅= (10)
where k is a proportionality constant.

For example, Nagel et al. [22] observed a DGD correlation
time of 19 hours, and predicts that the DGD will exceed three
times its mean value once every 3.5 years.  Since the
probability of the DGD exceeding three times its mean is
about 4.2×10-5 we can determine a value of 15 for k.

Applying (10) with a drift time of 3.4 days and a threshold
of three times the mean DGD, the mean time between high-
DGD events is about 14.8 years.  For a PMD-induced outage
probability of 1.3×10-7 (network availability of seven nines)
the receiver should tolerate 3.7x<∆τ>.  With a DGD drift
time, td, of 3.4 days, the estimated mean time between high-
DGD events will be about 4,700 years, making it an
extremely rare occurrence!
Duration of high-DGD events

Again from the DGD drift time, the Maxwellian
probability density function, and the temporal ACF, the
average duration of a high-DGD event can be estimated.
While the correlation time represents the time delay resulting
in a 63% reduction in the normalized ACF, smaller variations
in the ACF require significantly shorter times.  Again Nagel
et al. [22] estimated a mean outage duration between 10 and
20 minutes for their link having a DGD correlation time of 19
hours.  Bülow and Veith [15] found that while unusually long
duration outages occur, the probability of occurrence
decreases almost exponentially with outage duration.  In
other words, when outages occur, most will be of short
duration.

Based on these findings, for the 95-km link we observed,
we anticipate the typical duration of an outage to be between
1 and 2 hours with the possibility that a prolonged outage
could persist for 1 to 1.5 days.

Impact of high-DGD events on adjacent channels
When a high-DGD episode occurs, how many DWDM

channels will be affected?  For a link with a mean DGD of
5 ps, the DGD bandwidth will be about 180 GHz or 1.44 nm.
Therefore for a DWDM system with a 50-GHz channel
spacing, during a 3.7×<∆τ> event, the DGD in adjacent
channels may also experience PMD-induced signal
degradation, (i.e., only two or three channels will likely be
affected by a single high-DGD episode).
Design rules

Based on these observations and analyses, certain rules
may be developed.  An important parameter in making
decisions regarding PMD in a network is the ratio between
the receiver’s DGD tolerance, ∆τRX, and the link’s mean
DGD.

τ∆
τ∆

= RXM (11)

For cases where M > 3, the frequency of PMD-induced
outages will be low, and their duration may be brief.  In these
cases the approach proposed by Särkimukka (or one utilizing
new protection techniques) may be viable.  The occurrences
when switching this traffic may be required will likely be
infrequent (spanning years), and may only be required for a
few minutes or as long as a day.

For cases where 2 < M < 3, PMD-induced outages may
occur about once a month with typical durations measured in
10s of minutes.

For cases where M < 2, chronic PMD-induced outages will
result.  In these instances the option of applying PMD
compensation, interrupting the link with a back-to-back
terminal regenerator, or even replacing particular fiber
segments may be appropriate.
Example scenarios
10-Gb/s, <∆τ> = 10 ps, receiver’s DGD tolerance 40 ps

In this scenario the DGD margin, M, is 4.  The probability
of the DGD exceeding the receiver’s DGD tolerance level is
about 7.4×10-9, or effectively zero.  In this case it is quite
unlikely a PMD-induced outage will ever be observed.  The
DGD bandwidth will be about 90 GHz or about 0.72 nm.
10-Gb/s, <∆τ> = 10 ps, receiver’s DGD tolerance 23 ps

In this case the margin will be 2.3 meaning that the
probability of the DGD exceeding the receiver’s limit is
about 0.37%.  For a buried cable with a DGD drift time of
about 2 days, PMD-induced outages typically will occur
about once a month and last less than an hour.  The DGD
bandwidth will again be about 90 GHz.
40-Gb/s, <∆τ> = 3.2 ps, receiver’s DGD tolerance 5.7 ps

The DGD margin in this case is 1.8 so the probability of
the DGD exceeding the receiver’s limit is 4.4%.  For a link
with a drift time of 2 days, PMD-induced outages typically
will occur about every third day.  The typical duration will be
1 to 2 hours, however outages persisting for a day may occur.
The DGD bandwidth is about 2.2 nm or 280 GHz so in a
DWDM application with 50 GHz channel spacing, two or
three channels may be affected during each outage.



CONCLUSIONS
By examining the statistical behavior of DGD in an optical

fiber, and using measured DGD data on a buried optical
cable, predictions regarding the probability, frequency of
occurrence, and spectral extent of high-DGD episodes can be
made.  Reports by others confirm our observation that DGD
excursions of three or more times the mean DGD are
infrequent and relatively short lived.  This finding is
significant for network operators who may consider
providing a few spare channels in a DWDM environment to
ensure high network availability.

For cases where the mean DGD is comparable to the
receiver’s maximum tolerable DGD, approaches for ensuring
network availability include inclusion of PMD compensation
systems, shortening the link length by strategically
introducing back-to-back terminal regenerators, replacing
fiber segments found to have excessively high DGD levels, or
by utilizing an optical networking solution whereby traffic
may efficiently share protection bandwidth.
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PMD-Insensitive SCM Optical Receiver Using
Polarization Diversity

Rongqing Hui, Senior Member, IEEE, Christopher Allen, Senior Member, IEEE, and
Kenneth Demarest, Senior Member, IEEE

Abstract—Subcarrier multiplexing (SCM) optical systems
with high subcarrier frequencies are susceptible to power fading
caused by fiber polarization-mode dispersion (PMD). In this letter,
an SCM optical receiver free of carrier fading is proposed and
demonstrated using polarization diversity. Unlike conventional
PMD compensators, this setup does not require a tunable optical
delay line.

Index Terms—Optical communication, optical modulation, po-
larization, polarization-mode dispersion, subcarrier multiplexing
(SCM).

I N HIGH-SPEED long-distance optical transmission sys-
tems using subcarrier multiplexing (SCM), to minimize the

impact of fiber chromatic dispersion, optical single-sideband
(SSB) modulation has been used, which also increases the
spectral efficiency [1]. For this case, system tolerance to chro-
matic dispersion depends on the data rate on each individual
subcarrier channel. However, polarization-mode dispersion
(PMD) may become a limiting factor in this type of optical
system.

In an optical fiber with PMD, two distinct orthogonal po-
larization modes exist with different propagation constants and
different group velocities. This is described as the differential
group delay (DGD) between the two orthogonal principal states
of polarization (PSPs) of the fiber. Due to the statistical nature
of the perturbations along the fiber, instantaneous DGD has a
random value that generally follows a Maxwellian probability
distribution. While SCM optical modulation distributes the total
capacity of each laser transmitter into a number of subcarriers,
and therefore, the data rate carried by each subcarrier is rela-
tively low, the impact of PMD on SCM systems is determined
mainly by the frequency of each RF subcarrier, rather than by
the bandwidth of each individual subcarrier.

If we assume that the RF frequency of a subcarrier is,
this will also be the frequency separation between the carrier
and the subcarrier in the optical domain. During fiber transmis-
sion, both the carrier and the subcarrier are decomposed into
fast and slow PSPs. This causes a PMD-induced signal fading if
the fiber DGD is sufficiently high. To illustrate this in a simple
way, we assume that the optical field of both carrier and subcar-
rier are equally split into the fast and the slow PSPs and denote

, and as carrier and subcarrier optical field
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components on the fast and slow PSP, respectively. At
the receiver photodiode, the optical carrier beats with the op-
tical subcarrier creating two photocurrent components:

and ,
where is the relative propagation delay between the fast and
the slow PSPs, i.e., DGD. Therefore, the total received subcar-
rier component in the RF domain is

Because of the assumption of equal power splitting,
, and we have

The term represents the digital data carried by the subcar-
rier, is the recovered RF subcarrier with a
phase shift , and rep-
resents the PMD-induced subcarrier fading. A complete fading
happens when . A complete signal fading oc-
curs in this case because where is the pe-
riod of the subcarrier. PMD-induced carrier fading happens to
both double-sideband and single-sideband modulated optical
SCM signals [2], and it is indeed one of the biggest problems
preventing long-distance, high-capacity applications of optical
SCM systems. For an SCM system with the highest subcar-
rier frequency of 20 GHz, although the data rate on the sub-
carrier may be low, the accumulated DGD in the transmission
fiber has to be much smaller than 25 ps in order to avoid carrier
fading. Therefore, for most practical applications of reasonable
transmission distance, active PMD compensation will have to
be used.

PMD compensation is currently an active area of fiber-optic
system research. In many adaptive PMD compensating systems
[3], [4], as shown in Fig. 1(a), a polarization beam splitter (PBS)
is used to separate the signals carried by the two PSPs. A po-
larization controller (PC) precedes the PBS to align the PSPs
with the principal axes of the PBS. Following the PBS is a vari-
able delay line to compensate for the link DGD. Finally, the two
optical paths are recombined, and the effects of PMD can be
entirely compensated in the optical domain. Continuous moni-
toring of the residual PMD can be derived from the signal to pro-
vide feedback signal parameters for controlling the PC and the
variable delay line. A liquid-crystal-based PC is commercially
available with small footprint (such as the E-TEK FPCR series),
which provides endless polarization autotracking. However, the
variable optical delay line in such a PMD compensator is often
implemented using a mechanical system to provide the needed

1041-1135/02$17.00 © 2002 IEEE
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Fig. 1. Block diagrams. (a) Optical-domain PMD compensation using a
tunable optical delay line. (b) PMD-insensitive SCM optical receiver using
polarization diversity with RF envelope detection. (c) PMD-insensitive SCM
optical receiver using polarization diversity with RF-coherent detection.

DGD range. The speed, size, and reliability of this mechanism
raise concerns.

Another PMD-compensating scheme in time-division-multi-
plexing (TDM) optical systems is to shift the tunable delay line
to the electrical domain using a polarization diversity receiver
[5]. In this method, a tunable RF delay line has to be used after
one of the two photodiodes to correct the PMD-induced DGD.
Compared with the optical compensation method shown in [3]
and [4], the tunable RF delay line required in [5] is not neces-
sarily easier to implement than is an optical delay line.

Since PMD-induced carrier fading is the major concern in
SCM optical systems, we will show that polarization diversity
optical receivers shown in Fig. 1(b) and (c) are effective in elim-
inating this carrier fading, making an RF delay line unnecessary.
The setup shown in Fig. 1(b) works for amplitude shift keying
(ASK) SCM modulation scheme. Two photodiodes are used to
detect the two PSP components at the output of the system. In
order to ensure the alignment between the principal axis of the
PBS and the PSP of the fiber, a PC is used before the PBS. If
the principal axis of the PBS is properly aligned with the PSPs
of the optical fiber system at the carrier wavelength, the ampli-
tude of signals detected by both photodiodes will not be affected
by PMD-induced fading. The effect of PMD will be shown as

(a)

(b)

Fig. 2. Experimental setups. (a) An SCM system transmitting a nonmodulated
8-GHz subcarrier only. (b) An SCM system transmitting 2-Gb/s pseudorandom
nonreturn to zero (NRZ) data carried on an 8-GHz subcarrier. LD: Laser
diode. MD: Optical modulator. POL: PC. PBS: Polarization beam splitter. PD:
Photodiode. ( ): Square-law detector.

a relative time delay between the waveforms carried by the two
PSP components. An RF bandpass filter is used after each pho-
todiode to select the desired subcarrier channel, followed by
an RF detector to detect the signal envelope and remove the
high-frequency subcarrier. The signals carried by the two PSPs
are recombined after the subcarrier is removed, and therefore,
PMD-induced carrier fading is eliminated.

For phase-shift-keying-modulated SCM systems with co-
herent RF detection, an RF local oscillator is used to detect
the baseband signal that is carried as phase information on
each subcarrier component. To eliminate PMD-induced carrier
fading in this type of system, a voltage-controlled phase shifter
can be used, as shown in Fig. 1(c). Since PMD is a relatively
slow process, the phase-tuning speed does not have to be very
fast. This type of voltage controlled phase shifter is available
commercially.

To verify this concept, we have first built a system transmit-
ting only a subcarrier tone without any data on it. As shown
in Fig. 2(a), in this experiment, an 8-GHz sinusoid was applied
to an external optical modulator. A PMD emulator was used to
create the desired amount of DGD. A PBS was used to sepa-
rate the two orthogonal PSPs and a PC was used to align the
principal axes of the PBS to the system PSPs. Two high-speed
photodiodes were used to detect optical signals from both output
arms of the PBS. A two-channel digital oscilloscope was used
to display the detected signal waveforms.

With the DGD value of the PMD emulator set to zero, the two
waveforms detected by both photodiodes are exactly in phase.
Adjusting the angle of the PBS only resulted in amplitude redis-
tribution between the two waveforms. By introducing a DGD
using the PMD emulator, these two waveforms are no longer in
phase, and the relative time delay between them is equal to the
value of the DGD. Fig. 3 shows the measured waveforms when
a fixed DGD is set at 62.5 ps, causing the two waveforms to be
exactly out of phase. Fig. 3(a) was measured when the optical
input is launched into the fiber with 50/50 splitting between the
two PSPs and the principal axes of the PBS are aligned with the
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Fig. 3. Measured RF waveforms at the two photodiodes using the experimental
setup shown in Fig. 3(a). Fiber system has 62.5-ps DGD. Horizontal scale: 50
ps/div. (a) PBS aligned with fiber PSPs; signal SOP is midway between the fast
and the slow PSPs. (b) PBS is midway between the two fiber PSPs; the signal
SOP is also midway between the two PSPs. (c) PBS is aligned with the fiber
PSPs; the signal SOP is aligned with the fast PSP. (d) PBS is aligned with the
fiber PSPs; the signal SOP is aligned with the slow PSP.

PSPs. In this case, the two waveforms have equal amplitude and
opposite phase. Fig. 3(b) was obtained when the optical input
was launched into the fiber with 50/50 splitting between the two
PSPs, but the principal axes of the PBS is aligned halfway be-
tween the two PSPs. This is the worst case in terms of PMD ef-
fect, and complete carrier fading happens at both photodiodes.

Fig. 3(c) and (d) show the measured signal waveforms when
the input optical signal is aligned with the fast and slow fiber
PSPs, respectively. To avoid carrier fading at each diode, it is
essential to align the principal axes of the PBS with the PSPs of
the fiber system. In this case, since the optical-phase informa-
tion is removed during photodetection, the sum of the RF signal
power detected by the two photodiodes will be constant. The
signal power partitioning in the two photodiodes will depend
on the polarization alignment between laser source and the fiber
PSPs.

In order to demonstrate the application of this concept
in SCM digital systems, a digital transmission experiment
was conducted using the setup shown in Fig. 2(b). In this
experiment, a 2-Gb/s pseudorandom nonreturn-to-zero (NRZ)
signal was carried by an 8-GHz RF subcarrier. Again, a 62.5-ps
fixed DGD was artificially inserted by the PMD emulator. For
simplicity, the fiber length between transmitter and receiver is
short, and no chromatic dispersion is involved in the experi-
ment. When the principal axes of the PBS are aligned with fiber
system PSPs, no PMD distortion of signal waveforms results,
but the relative amplitude of the waveforms detected by each
photodiode depends on the signal state of polarization (SOP).
Fig. 4(a) and (b) show the detected waveforms when the signal
SOP is aligned with the fast and slow PSP, respectively, and
Fig. 4(c) shows the waveforms when signal SOP is midway
between the two PSPs. In this measurement, even though the
amount of system DGD is 62.5 ps, which is equivalent to a
phase shift of the RF carrier, the sum of the signal eye diagrams
detected at the two receiver arms remains independent of the
signal SOP. Because of the RF envelope detection after each
photodiode, which eliminates the RF carrier, carrier fading is
suppressed when combining the signal waveforms from the
two branches.

Fig. 4. Measured signal eye diagrams at the two photodiodes using the
experimental setup shown in Fig. 3(b). Fiber system has 62.5-ps DGD.
Horizontal scale: 200 ps/div. (a) PBS aligned with the fiber PSPs; signal SOP
aligned with the fast PSP. (b) PBS aligned with the fiber PSPs; signal SOP
aligned with the slow PSP. (c) PBS aligned with the fiber PSPs; signal SOP is
midway between the fast and the slow PSP. (d) PBS is midway between the
two fiber PSPs; the signal SOP is also midway between the two PSPs.

On the other hand, if the principal axes of the PBS are not
aligned with the fiber system PSPs, PMD-induced carrier fading
would happen at both of the two detection arms. Fig. 4(d) shows
the detected waveforms when the principal axis of the PBS is set
midway between the two PSPs of the fiber. In this worst case,
complete signal fading results.

It is important to note that there is no tunable delay line used
in this receiver. Even though carrier fading can be avoided by re-
moving RF phase information before adding signals from each
photodiode, the relative delay between the two branches still ex-
ists, which is determined by the fiber system DGD. For typical
SCM optical systems, where the data rate carried by each sub-
carrier is relatively low, a moderate amount of DGD will not
significantly degrade system performance.

In conclusion, we have demonstrated a carrier-fading-free op-
tical receiver for SCM optical systems using polarization diver-
sity. Since a tunable optical delay line is not required in this
setup, it may have advantages over optical-domain PMD com-
pensation.
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WQ3 Fig. 2. Experimental (a) and numerical (b) cumulative probabilities of sensitivity penalty. The
emulated PMD is 39 ps. 1 W/o comp.; 2 W/simple first-order comp.; 3 Transient-state during comp.; 3�
Absolute max tracking comp.; 4 ISOP control + first-order comp.

WQ3 Fig. 3. Numerical assessment of DOP versus total DGD for three cases: without compensation
(a), with first-order compensation (b) and with first-order compensation and ISOP control (c).

WQ3 Fig. 4. Second-order parameter [(2k*DGD)2 + PCD2]1/2 versus total DGD in the case of first-
order compensation (a) and ISOP control with first-order compensation (b).

pensation based on local maximum tracking,
with compensation based on absolute maximum
tracking and with compensation using ISOP con-
trol. The improvement brought by the latter in
comparison with an absolute maximum tracking
is obvious even if slight. Figure 3 plots DOP ver-
sus DGD with and without compensation. The
advantage of the relevant ISOP control lies in the
removal of the residual worst cases that appears
for total DGD greater than 60 ps. Thanks to this
new scheme of compensation the tolerable PMD
increases up to 37% of the bit-time (obtained by
extrapolation).4

Actually the issue of sub-optimum, in the case
of these high-DGD conditions, steps from
higher-order effects which make the maxima of
the function DOP(ΩC) not to be equivalent and
make the system wander slightly from PSP align-
ment. To this regard the degree of freedom
brought by PC1 is used to decrease the second-
order effects. Indeed Figure 4 shows that these
cases undergo the most important fading of the
second-order parameter in comparison with ones
of low DGD which seem to remain the same. The

trade-off between PSP alignment and second-
order is not so tight and becomes in favor of the
former, leading to a better DOP.

5. Conclusion
A new scheme of compensation combining first-
order compensation and relevant ISOP control
was proposed. Its interest lies in the fact that it
avoids staying a long time on sub-optimum,
yielding poor performance of the compensator. It
has proved to be a good and a simple means to
improve the value of tolerable PMD in the line up
to 37% of bit-time.
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Combating PMD-induced signal fading in
SCM optical systems using polarization
diversity optical receiver

R. Hui, C. Allen and K. Demarest, The
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Center, Department of Electrical and Computer
Science, The University of Kansas, Lawrence, KS
66044

Optical sub-carrier multiplexing (SCM) is a
modulation scheme where multiple signals are
multiplexed in the RF domain and transmitted
on a single optical carrier. A significant advantage
of SCM is that microwave devices are more ma-
ture than optical devices: the stability of mi-
crowave oscillators and the frequency selectivity
of microwave filters are much better than their
optical counterparts. While a popular application
of SCM technology is analog CATV distribution,1

SCM is also considered for use in high-speed dig-
ital transmission because of its flexible bit rate
granularity and bandwidth efficiency.

In high-speed long distance optical transmis-
sion using SCM, in order to minimize the impact
of fiber chromatic dispersion, optical single-side-
band (SSB) modulation has been used which also
increases the optical bandwidth efficiency.2 In
this case, system tolerance to chromatic disper-
sion depends on the data rate on each individual
sub-carrier channel. However, the impact of
PMD is mainly determined by the frequency of
each RF sub-carrier because the subcarrier fre-
quency is usually much higher than the datarate
it carries. Fig. 1 illustrates the waveforms of a bi-
nary coded SCM signal along the fast and the
slow principal states of polarization (PSPs) of the
fiber, respectively. Adding these two PSP compo-
nents on the photodiode, a complete signal fad-
ing may occur when the differential group delay
(DGD) approaches half of the RF sub-carrier pe-
riod. PMD-induced carrier fading happens to
both double sideband and single sideband mod-
ulated optical SCM signals,3 and it is one of the
biggest problems which prevents long distance
applications of optical SCM systems.

PMD compensation is currently an active area
of fiber-optic system research. In many PMD
compensator systems4,5 a polarization beam
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WQ4 Fig. 1. Illustration of signal waveform of an SCM system carried by two PSPs of the optical
fiber.

WQ4 Fig. 2. Block diagram of PMD insensitive optical receiver using polarization diversity

WQ4 Fig. 3. Measurement setup. LD: laser diode, MD: optical modulator, POL: polarization con-
troller, PBS: polarization beam splitter, PD: photodiode, ()2: square-law detector.

splitter (PBS) is used to separate the signals on
the two PSPs. A polarization controller (PC) pre-
cedes the PBS to align the PSPs with the principal
axes of the PBS. Following the PBS is a variable
delay line to compensate for the link DGD. Fi-
nally the two optical paths are recombined and
the effects of PMD have been compensated en-
tirely in the optical domain. Continuous moni-
toring of the residual PMD can be derived from
the signal to provide feedback signal parameters
for controlling the PC and the variable delay line.
In such a system, the variable delay line is often
implemented using a mechanical system to pro-
vide the needed DGD range. The speed, size, and
reliability of this mechanism are raise concerns.

In order to eliminate PMD-induced carrier
fading in SCM systems, we propose to use a po-
larization diversity optical receiver as shown in
Fig. 2. In this setup, two photodiodes are used to
detect the two PSP components at the output of
the system. In order to ensure the alignment be-
tween the principal axis of the PBS and the PSP of
the fiber, a polarization controller is used before
the PBS. If the principal axis of the PBS is prop-
erly aligned with the PSPs of the optical fiber sys-
tem, the amplitude of signals detected by both
photodiodes will not be affected by PMD. The ef-
fect of PMD will be shown as a relative time delay
between the waveforms carried by the two PSP
components.

To verify the concept, an experiment was con-
ducted using a setup shown in Fig. 3. A 2-Gb/s
pseudo random NRZ signal was mixed with an 
8-GHz RF carrier, this composite signal was used
to drive an external modulator. A 62.5-ps DGD
was created by a PMD emulator. Two polarization
controllers were used in the system: the first con-
troller (before the emulator) was used to adjust
signal SOP and the second controller (after the
emulator) was used for the alignment between
fiber system PSP and the principal axis of the
PBS. A dual-channel oscilloscope was used to dis-
play the waveforms detected by both photodi-
odes.

When the principal axis of the PBS is aligned
with fiber system PSP, PMD does not distort the
signal waveforms, but the amplitude of the wave-
forms detected by each photodiode depends on
the signal SOP. Fig. 4(a) and (b) show the de-
tected waveforms when the signal SOP is aligned
with the fast and the slow PSP, respectively, and
Fig. 4 (c) shows the waveforms when signal SOP
is in the middle between the two PSPs. In this
measurement, even though the amount of system
DGD is 62.5-ps, which is equal to a half period of
the RF carrier, the sum of the signal eye diagrams
detected at the two receiver arms remain inde-
pendent of the signal SOP. Because of the square-
law detection after each photodiode, which elim-
inates the RF carrier, carrier fading can no longer
happen when combining signal waveforms of the
two branches.

On the other hand, if the principal axis of the
PBS is not aligned with the fiber system PSP,
PMD-induced carrier fading would happen at
both of the two detection arms. Fig. 4(d) shows
the detected waveforms when principal axis of
the PBS is set in the middle between two fiber
PSPs. In this worst case a complete carrier fading
happened.

In conclusion, we have demonstrated a carrier
fading free optical receiver for SCM optical sys-
tems using polarization diversity. Since a tunable
optical delay line is not required in this setup, it

WQ4 Fig. 4. Measured eye diagrams at the two photodiode branches.
(a) PBS aligned with fiber PSP, signal SOP aligned with the fast PSP
(b) PBS aligned with fiber PSP, signal SOP aligned with the slow PSP
(c) PBS aligned with fiber PSP, signal SOP is in the middle between the fast and the slow PSPs
(d) PBS is in the middle between the two fiber PSPs.
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WQ5 Fig. 1. Explanation of PMD-induced RF power fading in a SSB SCM system in optical domain.

WQ5 Fig. 2. Experimental setup.

may be more practical than optical domain PMD
compensation.

This work was supported by Sprint Commu-
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Optical compensation of PMD-induced
power fading for single sideband subcarrier-
multiplexed systems
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1. Introduction
Polarization mode dispersion (PMD), caused
primarily by the random birefringence of single-
mode optical fiber, is a critical challenge in the
transmission of high speed digital baseband
channels (≥10 Gbit/s). A key feature of PMD is its
statistical behavior, since the relative orientation
between the state-of-polarization (SOP) of the
input signal and the principal-states-of-polariza-
tion (PSPs) of the fiber varies randomly with
time. Moreover, the differential group delay
(DGD) between the fast and slow PSP, i.e. first-
order PMD, is a random process with a
Maxwellian probability distribution. Note that
even for very-low-PMD fiber, there is still an ac-
cumulation of PMD caused by small contribu-
tions of many in-line components.

Subcarrier multiplexing has several important
applications in optical systems, including: cable
television, antenna remoting, LANs, and header
control information for packet-switched net-
works. Importantly, it has been reported that the
transmission of analog and digital subcarrier-
multiplexed (SCM) signals over fiber will also be
severely affected by PMD.1,2 For example, in 40-
GHz optical SCM systems, the RF power is com-
pletely faded with �12.5-ps instantaneous DGD.
The deleterious PMD-induced power-fading ef-
fect in SCM is as follows. The DGD between the
fast and slow PSP of an optical sideband in a SCM
signal causes a phase difference in the correspon-
ding received subcarrier signals in the photode-
tector. Superposition of the photo-currents may
lead to serious power fading of the recovered sub-
carrier signal due to destructive interference that
is a function of subcarrier frequency and accu-
mulated DGD.3 Furthermore, higher-order PMD
can cause additional distortion and degradation
of the transmitted signal.4,5 Although single side-
band (SSB) SCM system is relatively immune to
chromatic dispersion, the PMD-induced RF
power fading remains as an important problem.2

For many system conditions, robust transmis-
sion of an SCM data channel or tone necessitates

the use of some type of technique to compensate
or mitigate the power fading effects of PMD. One
published method of compensation used a typi-
cal first-order PMD compensator, which consists
of a polarization controller, a differential-group-
delay element, and a monitoring feedback loop.2

However, that method was limited since real
PMD is far from being first order and has many
higher-order components.4,5 Moreover, that tech-
nique was valid only for a specific average link
DGD.

We experimentally demonstrate a novel tech-
nique for compensating the PMD-induced power
fading that occurs in single sideband SCM trans-
mission systems. PMD-induced power fading can
be understood in the optical domain as caused by
the polarization state of the optical carrier being
different from that of the SSB. After transmitting
through a fiber link with PMD, we split the opti-
cal carrier and SSB signal, realign their polariza-
tion states to each other, and then combine them
at the receiver. Thus the first-order and higher-
order PMD-induced RF power fading could be
completely compensated. Our experiment shows
that RF power fading was compensated to be less
than 1.5 dB, compared to 3% of the samples ex-
hibiting greater than 15 dB of fading without
compensation. The new technique is a simple and
complete solution for PMD-induced RF power
fading, independent of the DGD of the optical
fiber link or the subcarrier frequency. It can ex-
pand to multi-channel SCM operation when the
total signal bandwidth of subcarrier frequencies
does not exceed a specified limit.

2. Concept and experiment setup
Figure 1 shows the concept for the explanation of
RF power fading induced by PMD in SSB SCM
systems. At the transmitter, the optical carrier and
SSB have the same polarization state. After prop-
agating through the optical fiber link, PMD in-

duces a phase delay between two PSPs for both
the optical carrier (∆ΦCarrier) and the SSB
(∆ΦSSB). In general, ∆ΦCarrier is not equal to
∆ΦSSB, so the optical carrier and SSB are in differ-
ent polarization states at the output of the fiber,
which causes RF power fading after the detection.
In particular, if the polarization state of optical
carrier is orthogonal to that of the SSB, the RF
power will be completely faded. If the polariza-
tion states can be realigned such that they are the
same for both the optical carrier and the SSB, the
PMD-induced RF power fading can be com-
pletely removed.

Figure 2 shows the experimental setup. We
first generate an 18 � 20 GHz double sideband
signal by externally modulating the 1550 nm op-
tical carrier. A SSB signal is obtained by using a
fiber Bragg grating (FBG) to filter out the lower
sideband. After propagation through a PMD em-
ulator, the optical carrier and SSB are separated
by another FBG. The FBG has a reflection of
99.7% for the optical carrier at the wavelength of
1550 nm, with a bandwidth of 0.1 nm. The re-
flected optical carrier passes through a polariza-
tion controller (PC) so that its polarization state
can be aligned to be the same as the SSB. Then the
optical carrier and SSB are recombined at the re-
ceiver. By adjusting the PC to maximize the re-
ceived RF power, the faded RF signal can be com-
pletely recovered after the detection.

3. Results and discussion
For the PMD emulator in the experimental setup,
firstly we used a PC and a polarization-maintain-
ing (PM) fiber with varying lengths to simulate
the first-order PMD (DGD). The power splitting
ratio was 0.5. Figure 3 shows the measured RF
power fading compared to the theoretical value,
and the compensated result. We can see that the
RF power fading is reduced to less than 1 dB after
compensation.
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An Adaptive First-Order Polarization-Mode
Dispersion Compensation System Aided by

Polarization Scrambling: Theory and Demonstration
Hok Yong Pua, Kumar Peddanarappagari, Benyuan Zhu, Christopher Allen, Kenneth Demarest, and Rongqing Hui

Abstract—An adaptive polarization-mode dispersion (PMD)
compensation system has been developed to cancel the effects
of first-order PMD by producing a complementary PMD vector
in the receiver. Control parameters for the PMD compensation
system comprised of a polarization controller and a PMD emu-
lator are derived from the nonreturn-to-zero (NRZ) signal in the
channel to be compensated. Estimates of the link’s differential
group delay (DGD) and principal states of polarization (PSP’s)
based on this signal are reliable when the signal power is equally
split between the link’s two PSP’s; however this condition cannot
be assumed. To meet this requirement, we scramble the state of
polarization (SOP) of the input signal at a rate much greater than
the response time of the PMD monitor signal so that each sample
represents many different SOP alignments. This approach allows
the effective cancellation of the first-order PMD effects within an
optical fiber channel.

Index Terms—Compensation equalizers, optical fiber communi-
cation, optical polarization-mode dispersion, polarization scram-
bling.

I. INTRODUCTION

D ISPERSION in optical fiber communication systems
degrades the optical channel signal quality by distorting

signal waveforms. In digital systems dispersion can produce
intersymbol interference (ISI). As the signal bandwidth is
increased, the effects of dispersion become more significant.
If not dealt with, dispersion represents a barrier to increasing
the channel capacity. Effective techniques have been developed
either to avoid or compensate for the dominant dispersion
phenomena (e.g., modal, waveguide, and chromatic). However,
among the dispersive phenomena in optical fiber, the effect of
polarization-mode dispersion (PMD) is particularly difficult to
compensate as its characteristics vary temporally. Fluctuating
environmental factors (such as temperature, wind, and atmo-
spheric pressure) can change the characteristics of PMD and
hence its impact on optical channel quality.

The birefringence of optical fiber supports two degenerate
modes, each having different propagation velocities, giving rise
to PMD. To gain a better understanding of PMD, models have
been developed that successfully predict the statistically ob-
served effects in fiber. In these models, a long fiber link is mod-
eled as a concatenated series of linearly birefringent, optical-
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fiber segments, each having a fixed birefringence, a fixed seg-
ment length corresponding to the fiber’s random mode coupling
characteristic length . The orientation of the principle axes
from one segment to the next is treated as a random variable [1].
At every junction between segments, the energy from each in-
cident pulse is split into two orthogonally polarized pulses, rep-
resenting the mode coupling that occurs in fiber due to pertur-
bations in local birefringence. After several such perturbations,
the original pulse becomes a large ensemble of small pulses,
dispersed in time. For the special case of a system using a light
source whose coherence time is greater than the PMD-induced
delays and a fiber whose optical loss is polarization indepen-
dent, the PMD phenomenon in a long fiber link behaves in ac-
cordance with a high-coherence model, which incorporates the
concept of principal states of polarization (PSP’s). This means
that, over a limited bandwidth, the link will behave as a ran-
domly birefringent optical fiber such that an input optical pulse
whose state of polarization (SOP) is aligned with one of the
link’s two input PSP’s will emerge from the fiber’s far end as a
single pulse, unchanged in shape and polarized along the fiber’s
corresponding output PSP. From this model, we know that an
input pulse aligned with neither input PSP will emerge as two
orthogonally polarized pulses, separated in time by the link’s
differential group delay (DGD).

This model is frequency independent and valid to first order
only. For wider bandwidths higher order effects must be con-
sidered resulting in frequency dependent polarization and dis-
persion [1], [2]. The bandwidth over which the PSP’s can be
assumed constant depend on the properties of the fiber and has
been shown to vary inversely with the mean differential group
delay (DGD) [3]. While the minimum bandwidth of the PSP’s
in single-mode fibers was found to be always over 50 GHz [3],
this bandwidth for standard single-mode fiber is of the order of
100 GHz [1].

Time-varying environmental factors can change the mechan-
ical stress on the fiber, causing localized changes in the bire-
fringence characteristics of the fiber. This, in turn, affects the
orientation of the PSP’s and the DGD of the fiber link. For an
optical transmitter with a fixed SOP, as the link’s input PSP’s
change orientation, the relative intensities of the two orthogonal
pulses will vary, and, at times, all of the energy will appear in
only one pulse (resulting in no discernable PMD effects).

For long fiber links (lengths ), the mean PMD in-
creases with the square root of the link length.For example, in
standard single-mode fiber, the typical random mode coupling
characteristic length is 100 m and the PMD is typically

0733–8724/00$10.00 © 2000 IEEE
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Fig. 1. Functional block diagram illustrating the adaptive PMD compensation system showing the evolution of the envelope and state of polarization for a single
transmitted pulse as it progresses from the transmitter through the link, after the polarization controller, and as it emerges from the PMD emulator.BPF: bandpass
filter; ( ) : square-law detector; LPF: low-pass filter.

Fig. 2. Example of a simulated transfer function of monitor signal power versus polarization controller settings. The input signal power is assumed to be equally
split on the two input PSP’s and the DGD in both the link and the PMD emulator is 50 ps.

Fig. 3. Simulated transfer function relating the monitor signal power versus emulator DGD that is used to estimate the link DGD. For this case the link DGD is
10 ps and the signal power is equally split on the input PSP’s.
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0.1 ps/(km) [1]. Therefore, for a typical terrestrial fiber link
length of 500 km, the mean anticipated PMD would be 2.24 ps.
This level of PMD is generally insignificant for channel data
rates of 2.5 Gb/s or less, but would certainly be significant for
data rates of 10 Gb/s, 40 Gb/s, and above.

In order to use a fiber link with PMD to carry optical signals
at ever increasing data rates without channel degradation, com-
pensation for PMD is necessary. While several PMD compen-
sation approaches have been reported [4]–[6], only those that
fully compensate PMD in a link by tracking variations in the
DGD and PSP’s are viable. The approach presented here at-
tempts to compensate fully for the effects of PMD on a single
optical channel over a fiber link.

II. A CTIVE PMD COMPENSATION

In the system we developed, the PMD adaptive compensa-
tion system treats the PMD on the link as a vector quantity, with
DGD as the magnitude and PSP as the direction. A PMD com-
ponent of equal magnitude but opposite in direction is applied
to the signal in the receiver so that the vector sum results in
zero PMD. To accomplish this, an accurate and reliable tech-
nique for monitoring the PSP’s and the DGD of the fiber link
was developed, together with a means of producing a comple-
mentary PMD vector in the receiver. A block diagram of our
system, shown in Fig. 1, illustrates the elements of the adaptive
PMD compensation system and shows the evolution of the en-
velope and state of polarization for a single transmitted pulse as
it progresses from the transmitter through the link, after the po-
larization controller and as it emerges from the PMD emulator.
The control parameters , and DGD correspond to the
settings for compensating the effects of PMD in the link.

To monitor the effect of PMD on the received signal, we
adopted the method presented by Takahashiet al.[4]. The power
level of a nonreturn-to-zero (NRZ) signal’s spectral component
corresponding to one-half of the data rate can serve as an indi-
cator of PMD in a fiber link. For example, to monitor the PMD
on a 10-Gb/s NRZ signal, the power of the spectral component
at 5 GHz is monitored. Implementing this approach involves
a narrowband bandpass filter centered at 5 GHz followed by
a square-law detector and a low-pass filter. The output signal
is maximized when the PMD affecting the optical NRZ signal
is minimized. The shape of the transfer function relating PMD
(more specifically, DGD) to the level of thismonitor signalis
approximately quadratic (as shown in Fig. 3).

The compensating PMD introduced in the receiver is set by
a polarization controller and a PMD emulator. The polarization
controller rotates the link’s output PSP’s to align with the input
PSP’s of the PMD emulator (which turn out to be linearly po-
larized). The PMD emulator introduces the desired time delay
(DGD) between two orthogonally polarized optical paths by
splitting the input signal based on its polarization and preferen-
tially delaying one of the two paths before recombining the two
orthogonally polarized signals. Through this approach, the two
output pulses that result from PMD on the link are precisely su-
perimposed in time, effectively undoing the effects of the link’s
PMD.

(a)

(b)

(c)

Fig. 4. Eye diagrams at different locations along the link in a simulated
10-Gb/s NRZ system: (a) transmitter output, (b) optical link output, and (c)
PMD compensation system output. Assumes equal power on the link’s input
PSP’s and 50 ps of DGD in the link. The adaptive PMD compensation system
is set to compensate fully for the effects of PMD in the link.

III. COMPUTERSIMULATION

Computer simulations were conducted to determine the
effectiveness of this approach. In the simulation, a 10-Gb/s
NRZ signal having a known SOP was launched into a fiber link
having a selectable PMD (PSP’s and DGD). At the receiver,
the signal was passed through our PMD compensation system
and the power of the 5-GHz spectral component (the monitor
signal) was determined. The polarization controller was mod-
eled as a combination of two quarter-wave plates (QWP’s) and
a half-wave plate (HWP), arranged as QWP-HWP-QWP. For
this arrangement, the polarization controller can be simulated
using a transformation matrix associated with only two free
parameters, the phase angle of the HWP and that of the first
QWP, since the phase angle of the first QWP and that of the
last QWP are always180apart.



PUA et al.: AN ADAPTIVE FIRST-ORDER PMD COMPENSATION SYSTEM 835

Fig. 5. Experimental setup for evaluation of the adaptive PMD compensation system. EDFA: Erbium-doped fiber-optic amplifier; fiber PC: fiber polarization
controller; PMF: polarization-maintaining fiber; HP PC: HP polarization controller.

Fig. 6. Timing relationship of two orthogonal pulses obtained from the output of the PMD emulator showing the induced DGD of 48 ps. The different pulse
levels of the signal traces indicate an unequal power splitting (approximately 70/30) between the emulator’s PSP’s.

To examine how the monitor signal power varies with polar-
ization controller setting, we assumed a priori knowledge of the
link’s DGD (50 ps in this case) and set the emulator’s DGD
to correspond. The monitor signal power was determined for
all possible settings of the polarization controller (with two de-
grees of freedom) to produce a surface. The coordinates of the
peak of the surface correspond to the polarization controller set-
tings that align the link’s PSP’s with the PSP’s of the emulator.
For the case where the input signal’s SOP aligned such that its
power is equally split between the link’s PSP’s, this procedure
produces a surface with a single peak as shown in Fig. 2.

We next examined how the monitor signal varies with DGD
in the PMD emulator. We began by setting the emulator’s DGD
to an arbitrary (but nonzero) value of 15 ps. In an effort to max-
imize the sensitivity of the monitor signal to DGD variations,
we deliberately misaligned the PSP’s of the link with those of
the PMD emulator by setting the polarization controller such
that the monitor signal is minimized. This approach is neces-
sary to resolve small values of link DGD and to accommodate
unequal power splitting between the PSP’s. For example, in the
case where the transmitter SOP is aligned with one of the link’s
input PSP’s and consequently the link effectively exhibits no
PMD, this polarization controller setting yields an unambiguous

link DGD estimate of zero; otherwise variations in the PMD em-
ulator DGD produces no change in monitor signal power.

We then varied the emulator’s DGD and observed changes
in the monitor signal level. Fig. 3 illustrates the transfer func-
tion relating emulator DGD and monitor signal level for the case
where the link DGD was 10 ps and the input SOP was aligned
such that its power is equally split between the link’s PSP’s. The
resulting curve has the expected shape, with a maximum (repre-
senting a minimization in the overall PMD) when the emulator
DGD exactly cancels the DGD in the link; that is,10 ps.

To show the effectiveness of the simulated PMD compensa-
tion system, eye diagrams of a 10-Gb/s NRZ signal were pro-
duced for the signal at the transmitter, at the output of the fiber
link (but prior to the PMD compensation system), and at the
output of the PMD compensation system, as shown in Fig. 4.
The eye-diagrams produced from the computer simulations in-
clude an 8-GHz, fifth-order low-pass Bessel filter used as a
post-detection filter to suppress high frequency components. In
the link, the DGD is 50 ps and the input SOP is oriented such
that the power is equally split between the link’s input PSP’s.
The eye at the output of the fiber link is clearly distorted, most
notably by the reduced slope at the bit transitions, resulting in
an eye closure penalty of 0.8 dB compared to the eye diagram
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at the transmitter. Assuming a jitter window width of 10 ps cen-
tered on the eye opening, the eye-closure penalty is computed
by comparing the vertical dimension of the eye opening with
that of the eye measured at the transmitter. The difference be-
tween the eye diagram at the transmitter and that at the output of
the PMD compensation system is negligible (0 dB eye-closure
penalty), demonstrating the effectiveness of the compensation
technique.

IV. EXPERIMENTAL VALIDATION

Laboratory tests were conducted to validate the results of the
computer simulation. Fig. 5 shows the block diagram of the lab-
oratory test setup. A 10-Gb/s NRZ signal was produced with
a bit-error rate tester (BERT) driving a Mach–Zehnder modu-
lator to intensity modulate a 1550-nm continuous-wave (CW)
optical signal followed by a lithium-niobate phase shifter that
serves as the polarization scrambler. (The SOP input is deliber-
ately aligned midway between the phase shifter’s fast and slow
axis so that an applied voltage results in a phase shift between
the two propagating waves producing a change in the output
SOP.) Next is an erbium-doped fiber amplifier (EDFA) to boost
the signal level. A link DGD of 48 ps was created using 23
m of polarization maintaining fiber (PMF). To vary the power
distribution between the two PSP’s in the PMF when the po-
larization scrambler was not activated, a manually controlled
(paddle-type) fiber polarization controller was placed immedi-
ately between the EDFA and the PMF. Fig. 6 shows the signal
output from the PMF when a 200-ps-long pulse is launched with
its SOP aligned relative to the PSP’s to yield an unequal power
split of approximately 70/30 in this case.

Orientation control of the receiver’s PSP’s relative to
the PSP’s of the PMF was achieved with an HP 11896A
computer-controlled polarization controller. The polarization
controller is followed by a computer-controlled PMD emu-
lator to introduce the compensation DGD. In this device, the
incoming optical signal is decomposed into its two orthog-
onal, linear polarization components, which propagate along
separate optical paths that are ultimately recombined with
their polarization states preserved. As the path length of one
of the two paths is variable while the path length of the other
is constant, various amounts of DGD can be produced, both
positive and negative. The computer-controllable JDS PE3050
PMD emulator used in our experiments has a DGD range of

30 to 125 ps and a resolution of 0.002 ps.
The output of the PMD emulator is connected to a pho-

todetector to convert the signal from the optical domain to the
electronic domain. Following the photodetector is a 7.5-GHz
LPF. The signal is then split, one portion going to a high-speed
oscilloscope to monitor the signal’s eye diagram, and the other
portion sent to an HP 8592L microwave spectrum analyzer
where the power of the 5-GHz spectral component (the monitor
signal) was measured. The spectrum analyzer was configured
to provide a digital output signal representing the bandlimited
(300 kHz bandwidth) power of this spectral component. This
monitor signal is then used by a computer to determine the
control parameters for the polarization controller and the

(a)

(b)

(c)

Fig. 7. Eye diagrams for a 10-Gb/s NRZ system with equal power distribution
on the link’s input PSP’s and 48 ps of DGD in the link measured at different
locations along the link: (a) transmitter output, (b) optical link output, and (c)
PMD compensation system output.

PMD emulator, through a sequential search process aimed at
maximizing the monitor signal power.

Fig. 7 shows the eye diagram for the signal at various points
in the system. First is the eye diagram of the signal output from
the transmitter. Next is the eye diagram of the signal output from
the PMF for equal power splitting between the PSP’s. The most



PUA et al.: AN ADAPTIVE FIRST-ORDER PMD COMPENSATION SYSTEM 837

Fig. 8. Collection of curves representing the monitor signal power versus link DGD for various signal power distributions on the input PSP’s. Power ratio at the
input PSP’s vary from 50/50 to 100/0 in increments of 7.14. The simulated link DGD is 20 ps.

notable effect of the 48 ps of DGD introduced by the PMF is
the reduced slope at the bit transitions. Finally, we show the
eye diagram of the signal output from the PMD compensation
system, where the quality of the eye has been largely restored
to its original shape. Using the transmitter output eye opening
as a reference and a 10-ps jitter window width, the eye-closure
penalty of the signal at the output of the PMF is 3.8 dB, while
at the output of the PMD compensation system the eye-clo-
sure penalty is 0.07 dB. The difference in eye-closure penal-
ties between the simulation and the laboratory measurements
may be attributed to amplitude and phase ripple in the system
transfer function (including the modulator, photodetector, elec-
trical post-detection filter) in the hardware but not accounted for
in the simulation.

V. SOP/PSP ALIGNMENT EFFECTS

As mentioned above, the ability to monitor the state of the
PSP’s and DGD on a link reliably is somewhat dependent on
the input SOP exciting both PSP modes in the link. Instances
where the input SOP is nearly aligned with one of the link’s
input PSP’s significantly degrades the ability of the monitoring
system to track the PSP’s and the DGD.

To investigate the effects of various SOP / PSP alignments,
computer simulations of the PMD compensation system were
conducted. As before, a 10-Gb/s NRZ signal having a known
SOP is launched into a fiber link having a selectable PMD
(PSP’s and DGD). At the receiver, the signal is passed through
the PMD compensation system and the power of the monitor
signal is determined. Setting the polarization controller so
that the link’s PSP’s and the PSP’s of the PMD emulator
are misaligned as before, we estimate the DGD in the link
by varying the emulator’s DGD and observe changes in the
monitor signal level. With the link DGD set at 20 ps, Fig. 8
shows results for several cases representing various alignments

of the input SOP with the link’s input PSP’s. For the case where
the SOP is aligned such that the input power is nearly evenly
split, the location of the maximum approximates the actual
link DGD, i.e., 20 ps. However, as the splitting ratio becomes
more and more unbalanced, the emulator DGD that maximizes
the monitor signal power moves progressively toward zero.
Finally the case where all of the power is launched along one
PSP results in a curve that peaks at zero DGD in the emulator,
despite the fact that the link’s DGD is 20 ps. Hence the use
of this parameter to estimate the link’s DGD is sensitive to
the relative alignment of the input signal’s SOP and the link’s
input PSP’s.

The relative alignment of SOP and PSP’s also affects the
transfer function relating the monitor signal power to the state
of the polarization controller. To illustrate this, we again present
computer simulations of the PMD compensation system as be-
fore. For this evaluation, we assumea priori knowledge of the
link’s DGD and set the emulator’s DGD to correspond. The
monitor signal power is determined for all possible settings of
the polarization controller with two degrees of freedom to pro-
duce a surface plot. The coordinates of the peak of the surface
corresponds to the polarization controller settings that align the
link’s PSP’s with the PSP’s of the emulator. For the case where
the input signal’s SOP is aligned such that its power is equally
split between the link’s PSP’s, a surface with a single peak is
produced as was shown previously in Fig. 3. However, as the
alignment between the input SOP and the link’s input PSP’s is
changed, the shape and nature of the surface changes also. In
Fig. 9(a) the alignment producing a 70/30 distribution of the
signal power on the PSP’s results in a surface with two unequal
peaks. In Fig. 9(b) the alignment is changed so that all of the
signal power is coupled into a single PSP. In this case, two peaks
of equal amplitude are observed, each corresponding to a case
where 100% of the signal is routed through only one branch of
the PMD emulator, as would be expected, and the two peaks
represent two orthogonal polarization controller settings.



838 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 6, JUNE 2000

Fig. 9. Three-dimensional presentation of how the monitor signal varies with polarization controller setting with the input SOP fixed relative to the fiber PSP:
(a) 70/30 signal power split onto the input PSP’s and (b) all power is launched onto one of the input PSP’s.

Fig. 10. Eye diagrams for a simulated 10-Gb/s NRZ system with a 70/30 power distribution on the link’s input PSP’s and 50 ps of DGD in the link measured at:
(a) optical link output and (b) PMD compensation system output. The adaptive PMD compensation system is set to compensate fully for the effects of PMD in the
link and there is no polarization scrambling at the transmitter.
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VI. POLARIZATION SCRAMBLING

Based on these results, it is clear that the use of the mon-
itor signal alone to determine the proper PMD compensation
system settings is inadequate; knowledge of the relative align-
ment between the input signal’s SOP and the link’s input PSP’s
is also needed. Since the link’s input PSP’s are time varying,
tracking with the launched signal’s SOP orientation is not pos-
sible without additional information. To overcome this chal-
lenge, we scrambled the SOP of the input signal at the output of
the transmitter. While the relative alignment between the SOP
and the link’s input PSP’s is still not known at any instant, we
do know that over a given interval determined by the frequency
of the polarization scrambler a variety of relative alignments is
realized. Additionally, for truly random SOP scrambling, the
alignment having the greatest probability is where the power
is equally split, and the lowest probability is where all of the
power propagates along a single PSP. Therefore the estimate of
the proper settings for the PMD compensation system based on
the monitor signal is greatly improved when the input SOP is
scrambled.

Simulation results confirm the effectiveness of this approach.
When the input signal’s SOP is scrambled at a rate much greater
than the response time of the lowpass filter and each sample rep-
resents multiple alignments, the estimate of the compensating
DGD and polarization controller setting agrees with the esti-
mates obtained when the input SOP is static and aligned such
that the power is evenly split between the PSP’s. Fig. 10 shows
the simulated eye diagrams for the case of an unequal power
split (70/30) without polarization scrambling. The eye diagram
shown in Fig. 10(a) represents the signal at the link output,
prior to the PMD compensation system. The eye-closure penalty
compared to the transmitted signal as shown in Fig. 4 is 0.5 dB.
Fig. 10(b) shows the eye diagram of the signal output from the
PMD compensation system that has been configured to maxi-
mize the monitor signal power. While the PMD compensation
system has improved the signal, some distortion of the eye re-
mains and the eye closure penalty is 0.25 dB. When polarization
scrambling is present, the eye diagram at the PMD compensa-
tion system is identical to that shown in Fig. 4(c), with a negli-
gible eye-closure penalty.

Experimental results also demonstrate that polarization
scrambling improves the effectiveness of the PMD compen-
sation system. The experimental setup described previously
was configured to produce an SOP alignment that resulted
in a power split of approximately 70/30 between the PSP’s
in the PMF. The eye diagram at the output of the PMF is
shown in Fig. 11(a) and has an eye-closure penalty of 2.5 dB
compared to the transmitted eye. The eye diagram at the output
of the PMD compensation system configured to maximize
the monitor signal is shown in Fig. 11(b). While the resultant
eye diagram is improved compared to the uncompensated eye,
the eye-closure penalty is 0.79 dB. Finally, the eye diagram
shown in Fig. 11(c) represents the case where the polarization
scrambler at the output of the transmitter is activated and the
PMD compensation system again determines the appropriate
settings that result in a maximum monitor signal power. The
eye closure penalty for this eye diagram is 0.15 dB. Hence

Fig. 11. Eye diagrams of the signal received from a link having 48 ps of DGD
and a 70/30 power split: (a) before the PMD compensation system, (b) after the
PMD compensation system without polarization scrambling, and (c) after the
PMD compensation system with polarization scrambling.

in this case, polarization scrambling improves our ability to
compensate for PMD by more than 0.6 dB.

In this experiment, the polarization scrambler was driven by
a sinusoidal voltage with an amplitude sufficient to produce an
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Fig. 12. Overview of signal eye-pattern degradation due to PMD effects for
various degrees of PMD compensation.

orthogonal polarization. When viewed on the Poincare sphere,
the resulting SOP’s would ideally map out a great circle. While
an ideal polarization scrambler would result in a uniform SOP
distribution on the Poincare sphere, this approach sufficiently
weights monitor signal with samples where the SOP is equally
split between the PSP’s so as to improve the DGD estimate.
The frequency of this signal was approximately 1 GHz in this
experiment.

To summarize the effectiveness of the PMD compensation
system both with and without the benefit of a polarization
scrambler at the transmitter, Fig. 12 presents the eye-closure
penalty for various fiber DGD cases for a simulated 10-Gb/s
NRZ signal. Three compensation modes are presented: no
compensation system; compensation system active but no
SOP scrambling; and active compensation with SOP scram-
bling. Symbols denote particular simulation results and the
curves represent a best-fit interpolation. For the case of no
compensation and variable power splitting between the PSP’s,
the eye degradation increases monotonically with increasing
link DGD. For the case of active compensation without SOP
scrambling, the eye degradation is substantially improved;
however the degradation is not eliminated. For the case of
active compensation with SOP scrambling, the eye degradation
due to PMD is essentially eliminated.

VII. CONCLUSION

An adaptive PMD compensation system has been developed
that cancels the effects of first-order PMD by producing a com-
plementary PMD vector in the receiver. Control parameters for
the PMD compensation system comprised of a polarization con-
troller and a PMD emulator are derived from the NRZ signal in
the channel to be compensated. Estimates of the link’s DGD and
PSP’s based on this signal are reliable when the signal power is
equally split between the link’s two PSP’s; however, this condi-
tion cannot be assumed. To meet this requirement, we scramble
the SOP of the input signal at a rate much greater than the re-
sponse time of the PMD monitor signal so that each sample rep-
resents many different SOP alignments. This approach allows
the effective cancellation of the PMD effects within an optical

fiber channel. As this approach relies on the PSP concept, this
compensation technique addresses only first-order PMD; con-
sequently in a wavelength-division multiplexing (WDM) appli-
cation, a separate PMD compensation system would be required
for each optical channel.
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Where TI (co,) = [si’) s:’) s : ” ] ~  an&, ( a 2 )  = [ s : ~ )  si2) s i2) IT  are the normalized 
vectors representing the two polarization states of the two input signals at frequencies w1 and 02, 
repectively. (1) is valid when the PMD in the fiber  (measurement  fiber)  is  small.  This  transfer 
function has  been verified by  both simulation and experiments in [4]. 

On the surface of Poincare  sphere, we can  write  (1) as 

1 
2 

F (s)  = -[1+ cos( $)]  

1 
2 
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where is the angle  between the two polarization vectors and s is the arc length between the  two 
end points of the  two polarization vectors on the  Poincare  sphere. From (2), we can write s as  a 
function of F, that is 

s = cos - ‘ ( 2 F  - 1) (3 )  
By definition, the first-order  PMD  is  calculated by [9] 

ds 

do 
PMD =I - I 

where (o is  the  signal  angular  frequency.  Substituting (3) into (4), we get 

1 dF 

If we use wavelength instead of frequency, ( 5 )  becomes 

where h is  the wavelength  and c  is  the  speed of light. 
The FWM transfer  function, F, is obtained by measuring the FWM efficiency as a  function of 

the signal wavelength separation. In real measurements, F needs  to be calibrated with the zero- 
PMD case to reduce  the  effects of chromatic  dispersion in  measurement fiber. The derivative in 
(6) should also  be  replaced by a  difference  equation  and we get 

where AF is  the  change in FWM efficiency inside  the small wavelength  window Ah. To reduce 
the  influence of FWM power  fluctuation,  multiple  measurements  are needed either at one 
wavelength or at  multiple  wavelengths. 
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111. Experimental results 

An experimental  setup for measuring PMD using FWM is shown in  Fig. 1. Here,  a PMD 
emulator was  used to  generate  a known amount of PMD in the system and served as the  fiber 
under test. A 17.5-km dispersion shifted fiber  (DSF) with a  zero-dispersion wavelength  of 1551 
nm was  used as the measurement  fiber  to  produce  FWM. The FWM  power was measured by  an 
optical  spectrum  analyzer. In our  measurements, the wavelength  of one input signal was fixed at 
1554.0 nm,  and the other  signal wavelength  was varied,  where  the range  of variation chosen 
depended on the  expected PMD values.  During  measurements,  the  PMD  emulator was first  set  to 
zero  PMD and the  FWM  efficiency  was  measured and recorded,  where the FWM efficiency is 
defined  as the FWM  power normalized  by its maximum value which occurs when the 
polarization states of  t,wo input signals  are  aligned.  This  data  was  used  for  calibrating  the FWM 
efficiencies for the non-zero PMD cases.  Fig. 2(a) and  (b)  show  the  measured  FWM  efficiency 
vs. the signal wavelength separation  for  two  PMD values, 10 ps  and 20 ps, after calibration.  The 
PMD-induced periodic variations on FWM power  is clearly observed when signal wavelength is 
swept.  The minimum measurable  FWM level was limited by ASE noise. 

Fig. 1 Experimental  setup  for  measuring PMD using  FWM. 
- 

LD--Laser  diode;  PC--Polarization  controller;  EDFA--Erbium-doped  fiber  amplifier;  DSF-- 
Dispersion-shifted  fiber;  OSA--Optical  spectrum  analyzer 

0.4 0.6 0.8 1  1.2  1.4 1.6 1.8 2 2.2  2.4 0.6 0.7 0.8 0.9 1 1.1  1.2  1.3 1.4 1.5 1.6 

Wavelengh  separation  (nm)  Wavelengh  separation  (nm) 

Fig. 2 Normalized FWM efficiency  for  PMD =10 ps  and PMD = 20 ps  after  calibrated 
with zero-PMD  case.  (a)  PMD = 10 ps, (b)  PMD = 20 ps. 

Fig. 3 shows  measured  average PMD  for  different  given PMD.  The measured  mean PMD 
values were obtained by averaging  the  measurements in different  wavelength ranges, represented 
by the  periods of variations of FWM efficiency on wavelength, as show in Fig. 2. Four  cases in 
Fig. 3 correspond  to  0.5, 1, 1.5 and 2 periods. The measured results  for all four  cases  follow well 
with the given values,  but are mostly a little bit lower than the  true PMD. This  is  due  to 
measurement  errors  around  the notch areas of the  measured  FWM  efficiency  curve.  Theoretically, 
the notches of the FWM efficiency  curve should have  approached zero, but in experiments  these 
points are non-zero due  to the amplified  spontaneous  emission in the erbium-doped fiber 
amplifier  (EDFA). 

To estimate the optical  bandwidth needed for this method,  Table 1 gives  the  calculated 
width in nanometer for each  period of the FWM  power  variations with different  PMD values. It 
agrees well with measured  FWM  data in Fig. 2. For high PMD (> 10 ps), the period is  quite 
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narrow. Thus the nonlinear  Poincare  sphere method can  measure PMD without  scanning 
measurement  signals in a wide optical  bandwidth. 

,20 ,.. . . .. . . . . . . . . . ... . . ... .. . .. . ... . .. . . . ..,.. I ...,.. . ."... .: Table 1 The  wavelength width  of  one  period of FWM 
I 

+Measured  PMD in 0.5 period 
--* 'Measured  PMD in 1 period 
+Measured  PMD in 1.5 Deriods I 

. 

0 

power  variations for different PMD ;dues 

1 2 3 4 5 
Measurements 

Fig. 3 Measured mean PPJD and the given PMD. 

In summary, we have presented a new Poincare  sphere  method  for  measuring PMD by using 
FWM generation in  single-mode optical  fiber. It is based on  the FWM power  transfer  function vs. 
the polarization states of the pump  signals.  Compared  to  the traditional Poincare  sphere  method, 
this method does not require measurement of the  Stokes vectors and is less insensitive to 
mechanical vibration of  measurement apparatus.  Compared to the nonlinear  fixed polarization 
analyzer  method,  this method does not need to  scan  a  wide  optical  bandwidth and thus  has  fewer 
requirements  on the measurement  fiber. 

Similar to the  nonlinear method  in [4], this  technique may also  be used as an in situ PMD 
measurement or monitoring method  on dense  wavelength-division multiplexed (DWM), traffic- 
carrying  fibers. If the polarization states of the  transmitted  signals are fixed, the FWM products in 
the  measurement  fiber generated by wavelength channels may provide an estimate of the PMD. 
This can be  done  either span-by-span or  over  several  spans. 
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Dispersion Using Four-Wave Mixing
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Abstract—A method for measuring polarization-mode dis-
persion (PMD) on fiber links using four-wave mixing (FWM)
generation is presented. This method uses a probe signal to
analyze the signal polarization state via FWM generation. The
FWM power transfer function is derived in terms of the Stokes
parameters, and is validated using both simulated and experimen-
tal results. Based on this transfer function, PMD measurements
are presented that agree well with the actual PMD values.
Compared to the traditional frequency-domain methods, this
new method does not require a motionless condition for the
measurement apparatus.

Index Terms—Four-wave mixing (FWM), nonlinear effects,
polarization-mode dispersion (PMD) measurement.

I. INTRODUCTION

POLARIZATION-MODE dispersion (PMD) is one of the
major limiting factors of ultrahigh-bit-rate optical fiber

communication systems. Currently, PMD is a big concern
when upgrading legacy networks of installed fiber to 10 Gb/s
(OC-192) rates and higher. At OC-192 bit rates, the maximum
acceptable amount of PMD is about 10 ps [1].

Existing PMD measurement techniques fall mainly in two
categories [2]. One involves time-domain measurements, and
includes the interferometric and optical pulse methods. The
other involves frequency-domain measurements, based on the
evolution of states of polarization (SOP) as a function of fre-
quency or wavelength. Included in this category are the fixed-
analyzer method, the Jones-matrix method, and the Poincare-
sphere method. A major drawback of the time-domain methods
is that their results are degraded by polarization state fluctua-
tions, caused by polarization mode coupling in the fiber [2]. On
the other hand, a limitation of the frequency-domain methods
is that any motion of the measurement apparatus, especially
at the ends the fibers, can totally destroy the measured results
[2], [3]. Maintaining a motionless condition is often difficult,
especially with field measurements.

This paper presents a novel method for determining PMD in
a fiber link by measuring four-wave mixing (FWM) products.
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In this method, a constant wavelength “probe” wave and a
variable wavelength “signal” wave are launched into the test
fiber of unknown PMD. The output signals are then input to
a low-dispersion, low PMD “measurement fiber” where FWM
products are generated that depend on the PMD of the test
fiber. Average PMD can then be determined by measuring
the power of the FWM products as the difference frequency
of the two signals is varied, since the magnitude of FWM
products depends upon the polarization states of the two
waves. This technique is insensitive to mechanical vibrations
and instabilities in the test equipment, since the measured PMD
depends only on the relative SOP change between the probe
and signal waves in the measurement fiber, not the position
coordinates of fiber or the equipment.

II. THE THEORY OF THE NONLINEAR METHOD

A. Dependence of the FWM Transfer Function
on the State of Polarization (SOP)

FWM is a nonlinear process induced by the Kerr effect in
optical fibers. If three signals at frequencies, , and
copropagate through a single-mode fiber, the newly generated
frequency through FWM will be . For
the partially degenerate case, , the newly generated
frequency is . The generated FWM power
depends not only on the signal frequency separation, the input
signal powers, the fiber loss, and nonlinear characteristics, but
also on the signal polarization states. The dependence of the
FWM power on these parameters for the partially degenerate
case can be expressed as [4]–[6]

(1)

Here, the first term, is called the power term, which
is a function of the fiber nonlinear coefficient the fiber
attenuation coefficient the fiber length and is the input
signal powers . The second term, is called the
FWM efficiency factor, which depends on the fiber dispersion

the signal wavelength separation the fiber loss and
length and the signal power [6]. The third term, is
the FWM state of polarization (SOP) transfer function, where
SOP are the states of polarization of signals 1
and 2, respectively. If , and

are the complex polarization
vectors of signals 1 and 2, respectively, and the fiber length
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is much longer than the coupling length (10–100 m in most
communication fiber), then can be written as [7]

(2)

This equation is valid for fiber with small PMD, since PMD
may significantly change the relative polarization states of the
two signals along the fiber when the frequency separation
between the two signals becomes large.

From the definitions of Stokes vectors [8], we can write the
sine and cosine functions in (2) as

(3a)

(3b)

(3c)

(3dc)

where , , and are the four normalized components of
Stokes vector, with the superscriptstanding for the signals 1
and 2, respectively. The normalized Stokes components satisfy
the relation

(4)

Substituting (3a) to (3d) into (2), we obtain

(5)

where and are
the two vectors representing the polarization states of the two
input signals on the Poincare sphere.

To see how FWM power generated in a low PMD, low
dispersion measurement fiber can be used to measure the PMD
in an arbitrary test fiber, we first note that, according to the
fixed polarizer method [3], the first-order PMD of a fiber can
be measured by launching a fixed SOP “signal” wave into the
test fiber and then passing the output through a fixed polarizer.
The output power from the polarizer is given by the expression,

(6)

where is the SOP of the light incident on the polarization
analyzer and is the unit vector specifying the transmission
state (i.e., the pass axis of the polarization analyzer). First
order PMD is then estimated using the formula [3]

(7)

where is the mean PMD, is the mean number of
maxima and minima of the curve in the frequency band

and is the polarization coupling factor (which equals
1.0 when the fiber under test is a PMD emulator).

Comparing (5) with (6), we see that they are the same
function, except that the polarization state of the 2nd, fixed
frequency “probe” signal in (5) replaces the polarizer trans-
mission state in (6). This suggests that an alternative to the
fixed polarizer method would be to launch two, fixed SOP
signals into the test fiber and pass the output through a short
measurement fiber that has both low PMD and dispersion.
According to (5), the FWM power generated in a low PMD
measurement fiber will vary with frequency changes of the
test signal exactly as would the output of the test signal alone
passing through a fixed polarizer. This means that we can
use the FWM transfer function (5) in place of thefunction
(6) when calculating PMD using calculating first order PMD
using (7).

The advantage of calculating PMD using the FWM power
produced in a separate, measurement fiber is that no special
care need be taken to maintain a strict spatial orientation
between the test fiber and the measurement equipment (such
as a polarizer). This is because the probe wave follows the
signal wave through both the test and measurement fibers and,
therefore, automatically establishes the polarization reference
in the measurement fiber.

B. Experimental Verification of the FWM Transfer Function

In order to verify (5), both experiments and numerical
simulations were performed and compared with (5). A 17.5 km
length of dispersion-shifted fiber (DSF) was used to produce
FWM. The zero-dispersion wavelength of this fiber was 1551
nm. Two CW signals were input to this fiber, with wavelengths
1552.0 nm and 1552.8 nm, respectively. The polarization states
of the two input signals were varied by polarization controllers,
and a polarization analyzer was used to measure and record
the input polarization states of the two signals on the Poincare
sphere. The numerical calculations were performed using the
Split-Step Fourier-Transform Method [9].

Fig. 1 shows the results for the case of when both signals
were linearly polarized. Here, the SOP for one signal was fixed
and the SOP for the other signal varied along the equator of
the Poincare sphere. Fig. 1(a) shows the polarization states on
the Poincare sphere. Fig. 1(b) shows the FWM efficiency in
dB as calculated numerically, measured experimentally, and
predicted by the FWM transfer function (5). For these plots,
the FWM efficiency is defined as the FWM power, normalized
by its maximum value. These results agree well except in the
notch area, where the analytical curve from (5) goes to zero
( dB) when the two signals have orthogonal polarization
states. The simulated results at this point do not approach zero
due to the second-order FWM effects. The minimum measured
FWM power is limited by the ASE noise level. Even so, the
difference between measured maximum and minimum FWM
efficiency is roughly 15 dB, which is more than enough to
distinguish the minima and maxima needed for determining
PMD.

Fig. 2 shows the variation of the FWM efficiency when the
polarization state of one signal is a fixed, linear state, and the
other signal’s polarization state is varied from linear, to ellip-
tical, to circular, and back to the original linear polarization
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(a)

(b)

Fig. 1. The dependence of FWM on the input signal polarization states for
linear polarization.� signal 1;� signal 2.

state, as shown in Fig. 2(a). Numerically calculated, measured,
and analytical predictions (5) of FWM efficiency are shown
in Fig. 2(b) and, again, show excellent agreement.

III. M EASURING PMD USING FWM

An experimental setup for measuring PMD using FWM
is shown in Fig. 3. Here, the device under test is a PMD
emulator. The DSF measurement fiber is the same as that
used above for verifying the FWM transfer function. An
erbium-doped-fiber amplifier (EDFA) was used to boost the
signal power to produce FWM in the DSF. The FWM power
was measured with an optical spectrum analyzer. During the
measurements, the wavelength for one input signal was fixed
at 1554.0 nm and the other wavelength was varied over a
range that depended on the expected PMD values. Fig. 4(a)
and (b) shows the measured FWM power versus the signal
wavelength separation for PMD values of 20 and 10 ps,
respectively, where each is compared with the zero-PMD case.
The PMD-induced variations of the FWM power are clearly
observed as the signal wavelength changes, and look similar
to the transmission curves obtained when using the fixed-
polarizer PMD method. For the zero-PMD case, there are
some fluctuations in FWM power, but the magnitudes of the
variations are quite small and easily distinguished from PMD-
caused FWM magnitude variations. Fig. 5 shows the measured
PMD values for different settings of the PMD simulator. Here,

(a)

(b)

Fig. 2. The dependence of FWM on the input signal polarization states for
linear, elliptical and circular polarization.� signal 1;� signal 2.

it can be seen that the measured PMD values agree well with
the actual PMD values.

IV. CONCLUSION AND DISCUSSION

We have demonstrated a method for determining PMD by
measuring FWM generation in a section of DSF measurement
fiber placed after a test fiber. Both numerical simulations
and experiments were performed to verify the FWM power-
transfer-function dependence on the polarization states of two
waves launched into a fiber. PMD measurements were also
performed, with good agreement with the given PMD values.

Like the well-known fixed polarization-analyzer method,
this method uses a frequency-domain transfer function to
determine SOP changes with frequency and, consequently,
the PMD. The difference, however, is that this technique
uses the FWM power generated in a separate measurement
fiber to track the changes of polarization of a wave with
frequency. This makes this technique relatively insensitive
to mechanical vibrations and upset, since both the probe
and signal waveforms are subjected to the same mechanical
environments. Hence, the accuracy of this technique is limited
only by the additional PMD and dispersion added by the
measurement fiber itself, which is typically small in short
lengths of DSF fiber. In addition, errors can be further reduced
by first calibrating the measurement with the zero-PMD case
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Fig. 3. Experiment setup for measuring PMD using FMD.

(a)

(b)

Fig. 4. Measured FWM power versus wavelength separation for different
PMD values. DSF fiber length: 17.5 km, zero-dispersion wavelength: 1551
nm, Loss: 0.25 dB/km.

Fig. 5. Comparison of measured PMD using FWM and the given PMD.

(i.e., the test device or fiber under test removed), so that the
frequency dependence of the FWM in the measurement fiber
can be subtracted out.

An additional advantage of this technique is that it may be
possible for it to provide in situ PMD measurement or monitor-
ing on dense wavelength-division multiplexed (DWM), traffic-
carrying links. If the polarization states of the transmitted
signals are fixed, the FWM products generated throughout the
bandwidth of the channels in a separate measurement fiber
may provide an estimate of the PMD, either span by span or
over several spans.
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